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Part II
How Educational Technologies Shape

the Classroom Experience



Chapter 5
Perceptual Learning, Adaptive Learning,
and Gamification: Educational
Technologies for Pattern Recognition,
Problem Solving, and Knowledge Retention
in Medical Learning

Philip J. Kellman, Victoria Jacoby , Christine Massey ,
and Sally Krasne

Abstract In this chapter, we consider recent advances in the learning sciences and
their potential and actual applications in medical learning. We describe emerging
ideas that broaden traditional declarative and procedural emphases in learning, with
a special focus on perceptual learning—experience-induced improvements in the
pickup of information. Experience in a task or domain changes perception to be more
efficient at discovering and extracting relevant information and ignoring extraneous
information while also reducing effort and cognitive load. These discovery and
fluency changes from perceptual learning are crucial contributors to complex task
performance and advanced expertise. We also examine adaptive learning and its
connections to scientific research on the testing effect and the spacing effect, as well
as other examples of technology-enhanced learning (TEL), including games and
gamification in learning generally and medical education specifically. New learning
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technologies combining perceptual and adaptive learning make it possible to accel-
erate perceptual learning and rapidly advance aspects of expertise, such as pattern
recognition, that have been elusive in most instructional contexts. We illustrate the
efficacy of research-informed approaches to TEL in our work applying perceptual
and adaptive learning modules (PALMs) in medical learning domains. We outline
the scope of this research and illustrate characteristic elements and findings of
PALMs using the example of electrocardiography. We also describe research that
suggests that perceptual and adaptive learning in PALMs and related efforts have
great potential to improve medical learning, not only for difficult perceptual classi-
fications, but for factual learning and higher-order diagnostic skills as well.

5.1 Introduction

It is an exciting time to be involved in medical learning, either as a researcher or a
practitioner seeking to improve it. Efforts in cognitive psychology and related
disciplines to understand and improve learning—broadly described as the “science
of learning”—have expanded dramatically in recent years. These efforts have
yielded many new findings of practical importance such as spacing and interleaving
in learning and the advantages of testing over studying (e.g., Carpenter et al., 2012;
Pashler et al., 2007). Some of them have also begun to expand and change our very
conceptions about what learning is (Kellman &Massey, 2013), a transformation that
offers previously unanticipated opportunities for enhancing instruction with new
methods that accelerate the development of expert pattern recognition.

In this chapter, we consider recent advances in the learning sciences and their
potential and actual applications in medical learning. We describe concepts that
broaden traditional declarative and procedural emphases in learning, with a special
emphasis on perceptual learning—experience-induced improvements in the pickup
(extraction and differentiation) of information (Gibson, 1969; Kellman & Garrigan,
2009). We also focus on adaptive learning and its connections to scientific research
on the testing effect, the spacing effect, motivation, gaming, and mastery learning.
We review efforts to apply perceptual and adaptive learning, as well as game
concepts, in medical education. Following this review, we will focus in some detail
on our work on adaptive perceptual learning. We use our experiments training
medical students and residents to interpret ECGs to illustrate, in detail, both our
approach and the types of findings we have made in a variety of areas, both
published (histopathology, dermatology, echocardiography and electrocardiogra-
phy) and only presented thus far at professional meetings (obstetrics and gynecol-
ogy, radiology, point-of-care ultrasound, ophthalmology). We close with a
discussion of issues and prospects for the further development of advanced learning
technologies in medical learning.
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5.2 Conceptions of Learning

When we think of what “learning” is, several prototypical examples come to mind.
The storage of information in memory is one; learning a sequence of steps in a
procedure is another. These declarative and procedural kinds of learning are impor-
tant, but learning includes much more. One way to appreciate other crucial elements
is to look backward from the long-term goals of learning. Consider, for instance, a
newly minted MD’s ability to interpret an abnormal ECG, detect a suspicious
calcification on a mammogram, or pick up a subtle heart murmur using a stetho-
scope. Even the most diligent of students will nevertheless be slow and prone to
making errors—in stark contrast to the seemingly effortless performance of an
experienced practitioner. Although we dedicate intensive instructional effort to
written materials and classroom time ostensibly to “teach” and develop competency
in domains as diverse as medical diagnosis, aviation training, chemistry, and math-
ematics, it is accepted and obvious that when coursework and examinations end,
even the student who has excelled in learning the facts and procedures is not a pilot,
chemist, surgeon, or diagnostician. That functional expertise in most domains
requires further extended experience, such as multi-year medical residency, speaks
to other ingredients needed to fully “learn” or achieve real competence.

5.2.1 Perceptual Learning

What is missing from typical ideas of learning and most learning research? Oddly, if
one looks at the different but related domain of research on expertise, one does not
see this focus on declarative and procedural knowledge. Studies of expertise con-
sistently identify as the most striking difference between experts and novices, not
their storehouse of information, not their procedural knowledge, but their informa-
tion extraction and pattern recognition. Referring to classic research on chess
players by De Groot (1965), an influential review of research on learning and
education (Bransford et al., 1999) put it this way:

Experts are not simply “general problem solvers” who have learned a set of strategies that
operate across all domains. The fact that experts are more likely than novices to recognize
meaningful patterns of information applies in all domains, whether chess, electronics,
mathematics, or classroom teaching. In DeGroot’s (1965) words, a “given” problem situa-
tion is not really a given. Because of their ability to see patterns of meaningful information,
experts begin problem solving at “a higher place.” (DeGroot, 1965)

These changes derive from a set of learning processes called perceptual learning,
broadly defined as experience-induced improvements in the extraction of
information.

The idea that perceptual pickup of information changes with experience in a task
or domain may be unfamiliar to many. That perceptual learning attunes perception to
discover and extract meaningful information, often involving complex relations,
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may be similarly novel. Traditional views of perception as static, elementary, or
providing essentially meaningless raw material unless supplemented by other cog-
nitive processes would not suggest these ideas. However, contemporary research and
theory in perception embraces a very different view of the outputs of perception.
Perception is oriented toward extracting meaningful structure of objects and events;
it changes dynamically to optimize task performance; and it interacts closely with
other cognitive processes. (For discussion, see Kellman & Massey, 2013.)

Indeed, even the declarative and procedural aspects of learning, which might
seem “post-perceptual,” are deeply connected to pattern recognition skills developed
through perceptual learning. Vast storehouses of declarative information, or learned
procedures, are nearly useless without the learner being able to tell which facts,
concepts, or procedures apply to the case or situation one is confronting. Classifying
a situation, interpreting an image, and recognizing a constellation of symptoms—
these are all pattern recognition problems, and the way these pattern recognition
abilities develop and improve is through perceptual learning. As an example, one of
the authors is a pilot who owned an aircraft with a six-cylinder piston engine. One
day, as the pilot taxied in after a flight and parked at his home airport, the chief
mechanic happened to be walking by. After the pilot got out of the plane, the
mechanic said, “How long have you had that dead cylinder?” The pilot said
“What dead cylinder?” The engine sounded normal to the pilot, but the mechanic
could hear in a few seconds that one of the six cylinders had failed completely!
Obviously, had the pilot noticed a significant power loss in flight and later asked the
mechanic about possible causes, the troubleshooting process would have been rather
greatly accelerated by the entry point provided by the mechanic’s expert ear, as
opposed to tearing down the whole engine trying to discover a problem. We have no
doubt that medical practitioners in various specialties could recount a broad range of
analogous anecdotes.

The neglect of perceptual learning in most accounts and in instructional practice
relates to characteristic difficulties in teaching and learning. Perceptual learning
grows gradually and often implicitly, through encountering instances and making
classifications. Unlike the explicit teaching of a fact or procedure to able students, as
in medical learning contexts, this form of learning is not advanced much by lectures
or even demonstrations, and much of what is learned is often not verbalizable by
instructors or students (e.g., Benzil, 2018). These aspects of perceptual learning
account for why this kind of learning languishes under traditional approaches, and
they are key to the relevance of long apprenticeship or experience to reach expert
levels of pattern recognition.1 More direct attention to perceptual learning in training
has the potential to accelerate this process dramatically.

1It is important to note that scientific work on perceptual learning is distinctly different from
sociocultural and educational theories sometimes referred to as experiential or situated learning
(e.g., communities of learners (Rogoff, 1994), situated learning (Lave & Wenger, 1991), and
activity theory (Engeström et al., 1999), among others). Although both perceptual learning and
sociocultural experiential learning theories emphasize the importance of extended experience to
promote learning, the learning processes and outcomes that they are concerned with diverge
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We emphasize the pattern recognition aspects of perceptual learning because they
are important and somewhat intuitive to understand. In reality, the ways that
perception improves with experience are various, and together these perceptual
learning effects exert even broader and more profound effects on expertise. Percep-
tual learning effects fall into two broad categories, which have been called discovery
and fluency effects (Kellman, 2002). Discovery effects refer to learners coming to
find and select the information that is relevant to a task—for example, the features or
patterns that distinguish instances of one category from another. Learners come to
extract relevant information, including new relationships or patterns to which they
were originally insensitive (Gibson, 1969; Goldstone, 2000). Fluency effects refer to
improvements in the efficiency of information extraction. Whereas the “what”
(or where, etc.) in information pickup is the province of discovery, fluency involves
processes that expedite the pickup of relevant information. Experience or practice
leads to perceptual extraction that is faster, involves more parallel processing, picks
up larger “chunks” of information, and occurs with less effort or cognitive load. This
latter characteristic—greater automaticity in information extraction—allows the
operator to use attentional resources for other components of complex tasks and
situations. When discovery and fluency effects are considered together, it becomes
clear why there is a gap between a learner’s having stored relevant factual, concep-
tual, and procedural information and being an expert. In fact, there is more than one
gap. The activation of relevant information or actions through pattern recognition is
crucial in the initial grasp of a problem but also continues at each step in a procedure,
as information acquired guides the choice or nuances of each new action. At the
same time, new actions produce new information. This interleaving of information
pickup and action has been recognized in the concept of “perception-action loops”
(Gibson, 1966). The discovery aspects of perceptual learning lead to more selective
pickup of relevant information and sensitivity to new relations at many points in a
task. Even in tasks that may not primarily involve perception-action loops, such as
medical image interpretation, growing expertise leads to better actions in terms of
where to look; what to scrutinize or magnify, etc.; what to think about; and what to
do next based on information acquired. In complex situations, fluency effects allow
coordination of various task components, including the guiding of procedures with
reduced attentional load, allowing more effective management of multiple task
demands and communication, as well as better situational awareness. The apparent
magic of advanced expertise in many domains (chess, music, science, medicine)

considerably. Sociocultural learning theories are primarily focused on the learning of community
norms, values, and identities, as well as workplace roles and practices as they are situated in
particular contexts. They emphasize interpersonal interactions and collaborative activities as the
means by which learning is structured and mediated (Yardley et al., 2012). In contrast, perceptual
learning involves changes in the operation of perceptual systems that lead to domain-specific
selection and more rapid pickup of relevant information, extraction of relevant patterns or relations,
and reductions in effort or attentional load in perception. It is likely that experiential learning and
perceptual learning co-occur. Workplace or apprenticeship learning in medical education presum-
ably provides conditions that can support both of these types of learning.
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owes a great deal to the expert’s specialized, advanced, and automatic information
extraction, continuously interacting with other cognitive and procedural demands of
complex tasks (Bryan & Harter, 1899; Kellman & Garrigan, 2009).

Broadening ordinary conceptions of learning, and specifically the understanding
perceptual learning, offers clear opportunities to improve medical learning and the
acceleration of expertise. This is especially true when training approaches combine
perceptual learning with adaptive learning methods, to which we now turn.

5.3 Adaptive Learning

Adaptive learning may be defined broadly as the use of one or more aspects of a
learner’s performance to arrange learning content and events. Early work often
referred to such arrangements as adaptive instructional systems (e.g., Atkinson,
1976), but the more or less synonymous phrase adaptive learning has become
more common. There can be many forms of adaptivity, ranging from simple
pre-testing to determine a learner’s starting point, modification of learning content
to address each learner’s strengths and weaknesses, or trial-by-trial tracking of
learning performance to continually decide the sequence of learning events in a
learning session. While various forms of teacher-led differentiation of instruction for
different learners have been in widespread use for some time (Bondie et al., 2019),
possibilities and investigations of adaptive methods have blossomed with the emer-
gence of generally available digital technologies which have the speed and capacity
to arrange learning events in real time based on individual learner responses and to
store large databases of learning materials.

Recently, medical education specifically has embraced emerging technology-
enhanced learning or TEL. It has been argued that these efforts could be further
enhanced by greater use of adaptive learning (Sharma et al., 2017). A number of
efforts incorporating adaptive learning in medical education have been reported,
spanning a range of topic areas and types of learning (Kellman & Krasne, 2018;
McMahon & Drazen, 2014). One example is the NEJM Knowledge+ “Pain Man-
agement and Opioids” learning module (Hamnvik et al., 2019), which tests learners
and takes both learner accuracy and rated confidence as inputs to determine gaps in
knowledge and trigger presentation of learning content most needed. Hamnvik et al.
(2019) cite a conference paper (Healy et al., 2019) reporting that use of the NEJM
Knowledge+ review platform lowered the failure rate on the American Board of
Internal Medicine (ABIM) maintenance of certification exam from 11 to 5%.

Use of the term “adaptive” or adaptive features is not a guarantee of learning
effectiveness when compared to nonadaptive, business-as-usual control groups.
Griff and Matter (2013) measured the effectiveness of adaptive learning in anatomy
and physiology courses. Multiple schools were recruited for this study, and within
each school students were assigned to either an adaptive learning or control condi-
tion. In the adaptive learning condition, students answered multiple choice, multi-
select, and fill-in-the blank questions on a system called “LearnSmart” developed by
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McGraw Hill Higher Education. LearnSmart uses the accuracy of the answers given
in combination with each student’s confidence rating to select the next questions that
the student sees. Ideally, this should allow students to spend more time and receive
more practice on topics that are more difficult for them. In the control condition,
students were given practice questions chosen for them by their instructor from a
larger question bank supplied by the class’s textbook publisher. All students were
given a pre-test and a post-test, both containing the same questions. The duration
between the pre- and post-test varied. The study was conducted across six institu-
tions with the pre-test occurring at the beginning of the quarter or semester, and the
post-test was taken at the end of that quarter/semester.

Ultimately, the results showed that despite positive student feedback about the
LearnSmart program, in most schools there was no significant difference between
the adaptive and control groups in student performance gains from the pre-test to
post-test. The result is consistent with a number of studies in the emerging judgments
of learning (JOL) field showing that learner judgments of confidence are influenced
by numerous factors that may not be predictive of actual learning or future perfor-
mance (Kornell & Hausmann, 2017).

More generally, as with TEL, adding in adaptive or technological elements does
not guarantee success. Spector (2014) emphasizes that there is often an eagerness to
adopt the technology without thoroughly assessing its capabilities or without serious
consideration for how it is integrated into a classroom. Similar comments apply to
the use of games in learning. (See below.) Another issue is that many efforts in
adaptive learning have been evaluated through user satisfaction measures rather than
through objective measures of learning and retention.

5.3.1 Learning Principles and Adaptive Learning

We think that adaptive learning efforts are most likely to succeed when they are
based on learning principles that have been clearly tested and supported in research
using objective measures of learning. In this section, we briefly describe two such
principles, both as examples of research-based concepts that may be valuable and as
ideas that have been implemented in some successful adaptive learning approaches.
These are the testing effect and the spacing effect.

5.3.1.1 The Testing Effect

Testing is usually done to assess learning. Learners typically prepare for testing by
studying. It is mildly paradoxical, then, that testing events themselves have been
shown to improve learning more so than studying. This idea, which has a long
history (e.g., Abbott, 1909; Tulving, 1967), has come to be known as the testing
effect (Bjork, 1975; Carrier & Pashler, 1992; Roediger & Karpicke, 2006).
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The testing effect has been demonstrated in both laboratory and applied contexts
(Roediger & Butler, 2011). In one example, Larsen et al. (2013) measured the testing
effect in a real-world medical learning setting using residents attending an instruc-
tional conference. All residents participated in an hour-long teaching session on two
topics: status epilepticus and myasthenia gravis. Following the session, half of the
residents were given a test on status epilepticus and a review sheet to study for
myasthenia gravis; the other half were given a test on myasthenia gravis and a
review sheet to study for status epilepticus. Both the tests and review sheets covered
the same information, and residents were able to check their answers following the
test. This process was repeated approximately 2 weeks later, and at 6 months, all
residents returned to take a final test on both topics. The results showed that despite
being given the same information and amount of time devoted to each topic,
residents who engaged with the material through tests significantly outperformed
those who studied with the review sheet for each topic.

Why testing events are superior to studying events is not entirely settled. One
likely factor is that testing events activate more attention and effort. A “retrieval
effort hypothesis” suggests that more difficult (but successful) retrievals of informa-
tion provide greater gains in long-term retention (Pyc & Rawson, 2009). Studying
does not exercise retrieval processes in the way that testing does. Testing events with
feedback may also help learners to recognize deficiencies in their current under-
standing of material (Roediger & Butler, 2011), whereas restudying may give
illusions of familiarity that lead learners to overestimate what they know about the
topic (Bjork & Bjork, 2011). Other contributors to testing effects may be greater
elaboration and connections of knowledge that occur during retrieval and the idea
that testing practice resembles actual test situations more so than passive studying.

Adaptive learning and the testing effect go together naturally. Adaptivity always
depends in some way on assessment of a learner’s status or needs. Although some
adaptive efforts may use initial testing to choose a level or starting point for learning,
testing and adaptive learning can be more richly combined when most of the learning
itself consists of ongoing testing events (e.g., Mettler et al., 2016). With the
capacities of modern computer systems, such arrangements can acquire rich and
up-to-date estimates of learner performance and use the data to guide learning events
in productive ways. Prominent among these is to guide spacing in learning.

5.3.2 The Spacing Effect

Considerable research in the learning sciences converges in showing that spacing the
repetitions of an item in learning, rather than grouping them in close succession,
enhances long-term retention. This benefit generalizes across numerous tasks, mate-
rials, and time scales and has emerged as one of the most robust effects in learning
and memory research (Bjork & Bjork, 2011; Karpicke & Roediger, 2007). Although
most spacing research has focused on declarative (factual) learning materials, as in
foreign language vocabulary, paired associates, or learning facts from text, spacing
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research has been known for some time to have benefits in motor learning (Lee &
Genovese, 1988), although this may vary by task (Wiseheart et al., 2017). More
recently, spacing has been shown to have powerful effects in perceptual learning
(Mettler & Kellman, 2014). Thus, spacing considerations are likely to be important
across different types of learning, and they offer fertile opportunities for enhancing
learning using instructional technology.

Almost certainly, the explanation for spacing effects involves multiple factors
(Glenberg, 1979; Mettler et al., 2016). A fundamental one involves the well-studied
differences between massed and distributed practice. Revisiting a learning item
several times in succession offers little or no benefit for long-term learning. The
problem is that in such massed practice, relevant information remains in working
memory, providing no practice in retrieval from more long-term memory (Bjork &
Bjork, 2011). An analogous problem occurs in more complex tasks. In perceptual-
motor tasks, for example, learners retain components of performance and need not
organize the full processing and response selection as would be required with more
widely spaced challenges (Schmidt & Bjork, 1992). In perceptual learning, or the
aspects of complex tasks that involve perceptual learning, with massing, the learner
may remain attuned from one trial to the next to particular information useful for
classification.

Requiring that each learning event “stands on its own,” free of transient carryover
from recent events, is not the only driver of spacing benefits. Spacing of items
usually coincides with interleaving, such that between repetitions, not only does time
elapse but other learning items occur. Interleaving exerts benefits by connecting
retrieval to changing contexts and by facilitating discrimination between varying
items that occur nearby in time (Kang & Pashler, 2012; Kornell & Bjork, 2008).

A considerable amount of research has attempted to establish principles for
predetermined spacing schedules in learning. Some evidence suggests that
expanding recurrence intervals outperform fixed ones (e.g., Landauer & Bjork,
1978). Other work suggests that equal interval practice may actually be superior to
expanding practice intervals when measured after a delay (Karpicke & Roediger,
2007). On the other hand, Storm et al. (2010) reported better memory from an
expanding schedule, but only when intervening items during spacing were highly
related to spaced items, suggesting that expanding intervals work best for difficult
material.

Mettler et al. (2016) argued that the question of the superiority of
fixed vs. expanding spacing has no ultimate answer. There are many factors
known to relate to optimal spacing. Most, if not all, exert their effects on an internal
variable of learning strength. In general, the optimal time to practice an item is when
retrieval is difficult but can still succeed. This “retrieval effort hypothesis” (Pyc &
Rawson, 2009) fits a great deal of research (Bjork & Bjork, 1992; Johnston & Uhl,
1976; Pyc & Rawson, 2009; Thios & D’Agostino, 1976). Retrieval effort decreases
as learning strength increases. The problem in schemes that preset spacing intervals
is that fluctuations of learning strength in a learning session arise from numerous and
subtle influences that cannot be captured in an a priori model. Certainly, learning
strength tends to decrease over time without practice, and practice events (especially
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testing events) tend to increase it; but in any set of learning items, difficulty will vary
by item, by learner, and by interactions of the two. Many events that occur during the
course of a learning session, such as attentional fluctuations, momentary confusions
between items, or resolution of confusions by patterns of interleaving and feedback,
may affect a given learner’s learning strength for a given item.

5.3.3 Adaptive Learning and the ARTS System

These issues can be addressed by adaptive methods that assess learning strength in
an ongoing manner and adjust spacing intervals accordingly. Adaptive learning
systems have generally relied on accuracy data alone to assess progress, but accuracy
information alone is too crude to serve as the basis of optimal spacing. Several years
ago, we proposed that response times, along with accuracy, can better assess
underlying learning strength and serve as the basis of spacing. We developed the
ARTS (Adaptive Response-Time-based Scheduling) system to do this (Kellman,
2006; Kellman & Krasne, 2018; Mettler et al., 2011, 2016). Actually ARTS adds
response times to adaptive systems in two different ways: One is spacing, but the
other innovation is using response time in combination with accuracy to set mastery
criteria, an especially useful arrangement for many learning domains where both
accuracy and fluency are goals of learning.

The ARTS system has proven to be highly effective in various domains, espe-
cially in STEM learning and medical learning, and has been shown to outperform a
classic adaptive learning system (Mettler et al., 2011). These effects have been
evident in both factual and perceptual learning domains, suggesting that a successful
effort hypothesismay hold across various types of learning, generalizing the retrieval
effort hypothesis to apply to types of learning that do not depend primarily on
retrieval of memory items. Below we consider especially the application of ARTS
to perceptual learning in perceptual-adaptive learning modules applied to a variety of
medical learning domains.

With regard to efforts to optimize spacing, something more than evidence of
effectiveness is required. Mettler et al. (2016) performed experiments whose results
confirm the idea that optimal spacing intervals must be adaptive and based on the
individual learner. They first showed the superiority of adaptive learning to a
nonadaptive control condition. They then compared adaptive learning conditions
to two “yoked” control conditions. In a yoked-random condition, a new group of
participants received the same spacing intervals that had been generated by adaptive
participants, but randomized across the learning items. If the benefit of adaptive
learning derives, not from individually adaptive intervals per se, but from the overall
distribution of spacing intervals that occur under adaptive conditions, then this group
would have been expected to perform equally well as the adaptive condition. In a
yoked-item condition, spacing schedules that had been generated by adaptive par-
ticipants remained attached to the same learning items. If the benefit of adaptive
conditions derives from some items consistently having greater difficulty than
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others, then this group would have been expected to match the performance of
adaptive participants.

The adaptive learning condition outperformed both yoked control conditions.
There was a trend for the yoked-item condition to be better than the yoked-random
condition, suggesting that item difficulty does have an influence and that such
consistent effects of difficult and easy items are appropriately picked up by ARTS
and used efficaciously in spacing. Ultimately, however, adaptive intervals generated
by each learner’s own performance give the best learning results. These results are
consistent with the idea that optimal spacing must be tied to individual learner’s
learning strength for learning items, and they also confirm the importance of the
underlying construct of learning strength as the driver of optimal spacing.
Predetermined (nonadaptive) spacing arrangements cannot achieve the same results.

5.4 Games and Gamification in Medical Learning

Earlier we noted the role of digital technology as empowering the development and
implementation of adaptive learning methods. Similarly, the widespread availability
of computers has opened up new opportunities for educational games and
gamification. Gamification refers to the application of game elements to non-game
contexts (Deterding et al. 2011; Hamari et al., 2014; Rutledge et al., 2018).

The motivations for making learning games, or making learning activities more
like games, are several. In domains where many students struggle, such as mathe-
matics and other STEM subjects, it has been hoped that games or gamification might
increase student attention, engagement, and motivation. Instructors note with envy
the degree of immersion and engagement that is evident when students play video
games. If there were a way to engender such levels of attachment and commitment in
academic subjects, it might boost learning outcomes. If the effect of gamification
were simply to increase the time learners spend on learning tasks, it might plausibly
advance learning.

An interesting preliminary consideration is that it is hard to define precisely what
is meant by a game, or even game-like elements. Strikingly, the philosopher
Wittgenstein used “game” as a prime example in making the case that human
concepts do not have precise definitions or meanings (Wittgenstein, 1953). That
said, some game-like features that have been considered to be potentially useful in
learning include competition, speeded responses, feedback, markers of progress,
ascent of levels with increasing success, and well-defined rewards. Obviously, some
of these elements have been used in learning settings apart from explicit efforts to
make game-like activities.

The idea that games might help in serious learning contexts has had remarkable
momentum, especially when contrasted with the evidence base. The widespread
enthusiasm for the use of learning games or gamification has been primarily driven
by intuition (and, perhaps, advertising). Actual research on use of games has
indicated few clearly positive results when assessed by objective measures of
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learning. For example, a broad review by Young et al. (2012) found no compelling
evidence for learning benefits of games in STEM domains but possibly a benefit for a
small number of games in social science domains. A more recent meta-analysis
(Sailer & Homner, 2020) found modest positive evidence for gamification effects on
learning but reported inconsistencies in which elements lead to successful outcomes.

In medical learning applications, gamification has similarly led to mixed results
and conflicting views. One concern is that with many potential game elements to
choose from, an overall decision to “gamify” is less meaningful than specification of
particular features. Research on these specific factors seems more likely to be
meaningful and transferable than the overall idea of using a game.

One element that has been investigated in medical learning settings is competi-
tion. In a study conducted by Nevin et al. (2014), medical students were given the
opportunity to compete in an optional, web-based medical knowledge competition.
In this competition, participants answered multiple choice questions pertaining to
internal medicine. Participation was voluntary; participants had the ability to earn
badges, and there was a dynamically changing leaderboard. When participants were
questioned about their experience in subsequent focus groups, the students reported
that the leaderboard was their most important motivator (Nevin et al., 2014). Like
many studies of games in learning, the focus in data analyses was on acceptance (and
in this case, attrition), and there were no measures of objective learning or compar-
isons that could be used to argue that games enhanced learning beyond business as
usual approaches.

A study by Van Nuland et al. (2015) also tested the role of organized competition.
Volunteers from an undergraduate functional anatomy course engaged in an online
tournament either early or later in the term. In the tournament, participants competed
by answering a series of multiple choice or matching questions on the topic of
anatomy. Following the competition, students who participated in the activity
reported high levels of motivation. The group that competed early in the term, but
not those competing later in the term, showed higher course grades than other
students in the class who did not participate. Although this study is laudable in
using objective measures to compare the gaming groups to non-gaming learners, as
in the study by Nevin et al., it is hard to interpret the generality of results given the
self-selection of participants. Competition in particular may attract volunteers with
greater confidence in their learning of particular subject matter, or gaming may
actually energize learning in a subset of individuals (16.7% of the class volunteered
in this study). Engagement in the competition also led to more time on task for
participants. Interestingly, the authors characterized the intervention as game-like
due to competition but attributed the learning gains to the testing effect. Competition
and testing can be related, especially in that competition would seem necessarily to
involve testing, but they are conceptually separable factors, and testing can be, and
often is, implemented without competition.

Perhaps because it has been difficult to show clear learning gains from games,
motivational measures are more often reported (Hamari et al., 2014). Here too, the
particular elements responsible for group differences may be hard to pin down. Also,
enhanced motivation and acceptance presumably have value in learning contexts due
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to their potential for increasing learning. Studies that relate motivational measures to
learning outcomes are likely to be most valuable. Even apart from objective learning
measures, it also seems wise to include objective data on motivation such as
increased time on task or some other objective measure of participation or persis-
tence, as has been done in some studies, rather than rely exclusively on self-report
measures.

Recognition of levels of progress is another potentially valuable element often
used in games or gamification. In the same study mentioned above by Nevin et al.
(2014), they reported that students who earned badges throughout the competition
went on to answer more questions in the activity than those who did not earn badges.
That indications of progress might be helpful in increasing motivation and learning
is consistent with many different psychological and educational ideas, including
reinforcement theory, mastery learning, and goal-directed behavior.

As has been often recognized with the use of standardized tests in schools, it may
be important for instructional designers to seek to avoid having the game, rather than
the learning content, become the goal. Ng and Bereiter (1991) distinguished three
kinds of goals in self-directed learning: task-completion goals, instructional goals,
and personal knowledge-building goals. In the learning of basic computer program-
ming, they found that knowledge-building goals, relating to personal interests in
learning, were the least frequently expressed, but that students who did express them
showed superior learning outcomes in several respects.

Recognition of levels of progress as a learning element readily connects to all
three of these goal types. Students’ motivation to satisfy the instructional goals (i.e.,
perform well in the game or on a test) or the task-completion goals, however, may
actually compete with knowledge-building (Ng & Bereiter, 1991). We have seen this
effect in sequences of trials in adaptive learning where the task and instructional
goals of getting to the next trial or finishing a module may cause a learner to speed
through and miss valuable trial feedback. A separate issue is that progress indicators
may backfire if a learning task is too hard, as participation for long periods without
obvious progress undercuts motivation. On balance, however, levels of progress
indications seem to have strong potential to maintain motivation. It is worth careful
effort, however, to align task and instructional goals with the deeper learning
objectives, as game elements, such as speeded response and competition to finish
quickly, can act at cross purposes to learning goals.

In STEM and social science subjects, games for primary and secondary school
students have often been built around fictional stories, where progress toward the
treasure or defeating the space aliens occurs through answering questions or other
challenges involving learning items. These approaches have not often been used in
medical learning, where the commitment and motivation of learners tends to be
higher and more consistent.
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5.4.1 Gaming Prospects and Pitfalls

Although more successful versions of learning games could be developed, there are
sound scientific reasons that suggest serious limitations on how much games might
ultimately enhance meaningful learning. Put another way, these are concerns that
identify issues that would have to be addressed or circumvented to derive greater
learning benefits from games.

One well-known concern has been called the bells and whistles problem (e.g.,
Moreno & Mayer, 2000). Since the emergence of enhanced graphics, sound, and
animation capabilities in ordinary computers, there has been widespread enthusiasm
for adding multimedia features, story lines, scenery, characters, sounds, animations, etc.
as features in learning software and games in particular. These additions often fail to
produce learning benefits andmay instead lead to poorer performance. A deep reason is
that such additions almost always add extraneous cognitive load (Chandler & Sweller,
1991), which can impair learning of relevant material. Extraneous cognitive load refers
to information or inputs that attract processing resources but are not inherently part of
the learning content. This kind of load contrasts with intrinsic and/or germane load,
which relate to the learning content and associated problem solving efforts (Van
Merriënboer & Sweller, 2009); these are relevant to the targeted learning content,
and coping with increased load of these types may often be an important factor in
learning, as in the “desirable difficulties” framework (Bjork & Bjork, 2006, 2011).

A related problem is what we call the spoonful of sugar problem. Embedding
mathematics or science learning in a game has often been done on the assumption that
the game will be more fun than the actual content of these disciplines. Thus, the
engaging storyline, action, or adventure are the “sugar,” whereas the mathematics or
science can be slipped into the mix as the medicine, and all will be well. The problem
with this reasoning is that students tend to learn the story or game but not so much the
math or science (Young et al., 2012). An increase in time and attention will not benefit
learning goals if it is primarily dedicated to game elements that are not intrinsically
related to the intended academic content. This is not an incidental finding; it is exactly
what would be expected on the grounds of limited capacity in human information
processing and the extraneous load presented by a story or game. Yet another difficulty
is that in any learning domain, some of the material is more amenable to gamification
than other parts. Thus, much research on games and learning has essentially “cherry-
picked” parts of learning that seem suitable for a game; as a result, there are numerous
games in which students advance by correctly doing arithmetic but few that teach
quantum mechanics. It remains unclear how general a strategy gamification might be.

Both the bells and whistles problem and the spoonful of sugar problems are
related to what has been called the problem or paradox of seductive details. Seduc-
tive details refer to interesting pieces of information, stories, or images that are only
tangentially related to the topic being learned, but are not oriented toward the specific
learning objectives (Harp & Mayer, 1998). Such details are added most often in an
attempt to make the topic more interesting and relatable for students. However,
inclusion of such irrelevant information has been found to actually disrupt learning
(Rey, 2012). Moreno and Mayer (2000) discuss seductive details in relation to what
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they call the coherency principle—that multimedia presentations should use minimal
extraneous words or images.

Finally, efforts to improve motivation and engagement using games seem to have
made little contact with an extensive literature in animal and human behavior about
explicit rewards in learning (e.g., Hidi, 2015; Schwartz, 1982). The explicit rewards
in a game may lead to short-term engagement but may actually undermine subse-
quent interest, participation, and learning in that domain when no explicit rewards
are offered. We know of no studies that have actually examined long-term effects of
game-based learning in this regard.

Medical learning may be in something of a privileged position regarding some of
these factors. Medical learners are usually self-selected, highly intelligent, and
strongly motivated. Couching learning in a story about fighting off space aliens is
usually unnecessary. And competition may be less off-putting than it would be to
many students in middle school mathematics. Thus, having a game-like flow, levels
of progress, and even competition may have useful applications. These factors may
increase motivation, attention, or time on task, and, as mentioned, competition
almost always incorporates benefits of the testing effect. Not much research has
attempted to disentangle separable effects of these potentially relevant factors.

On balance, continued efforts may lead to development of more valuable
gamification efforts. Crucial in such developments will be use of objective measures
in learning, as well as avoidance of clear pitfalls of extraneous cognitive load. Most
of all, efforts to identify and test rigorously specific game-like elements will have the
clearest implications for generalizable efforts.

5.5 Perceptual and Adaptive Learning in Medical Domains

In this section, we consider applications of perceptual and adaptive learning in
medical domains. The work in this section focuses on our program of research,
which has combined perceptual learning and adaptive learning in efforts to acceler-
ate expertise in a variety of medical learning domains. For brevity, we give some of
the general aims and characteristics of PALMs, and we elaborate these in describing
PALMs in electrocardiography.

This combination has wide application, as much of medical diagnosis is based
upon perceiving and interpreting patterns, be they the details of the squiggles in a
12-lead electrocardiogram (ECG), the sounds transmitted via stethoscope of a
beating heart, or specific features in patients’ descriptions of why they are consulting
a physician. Abilities to pick up the relevant features embedded in each of these, and
other, clinical recordings and presentations are not readily mastered but require years
of experience, extending from medical school through residency and even through-
out the early years of clinical practice. The fact that many patients seek out clinicians
who have “been around awhile” rather than newly minted physicians is common-
place, but revealing. Recently trained physicians may have up-to-date factual
knowledge and training in the latest techniques, but hard-won expertise in pattern
recognition is found in more experienced practitioners.
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Although most applications have involved classification of complex clinical
displays and presentations, we discuss at the end applications of the core concepts
to two other areas in medical learning: factual and conceptual learning that may be
greatly improved by adaptive learning methods such as ARTS and higher-order
pattern recognition in diagnosis integrating across multiple sources of information.
Some work indicates that adaptive and perceptual learning methods also have great
potential to enhance these aspects of learning.

5.5.1 General Aims of Perceptual-Adaptive Learning
Modules (PALMs)

Why are pattern recognition and diagnostic skills at various levels of medical
practice so elusive? Why do they take so long to develop? These questions actually
have answers. In fact, there are two related answers. First, as we have already
mentioned, the relevant mechanisms involved in these attainments are not much
engaged by typical declarative and procedural instructional methods. Much of the
relevant learning cannot be well verbalized, and seeing a couple of examples in a
textbook or lecture does little to advance perceptual learning.

The second, related, answer is that until recently there has not been much in the way
of instructional methods that effectively target pattern recognition. The relevant percep-
tual learning of classifications, distinguishing features, and the seeing of complex
relationships develops gradually and implicitly through encounters with many examples,
efforts to classify them (in other words, having a task), and receiving feedback (Kellman
& Garrigan, 2009). The instances in any learning domain also need to cover the space in
important ways. For a set of diagnostic categories in a domain, for example, training
must include ample instances that allow learning mechanisms to sort diagnostic prop-
erties that determine membership in one category vs. another, and there must be ample
exemplars that show irrelevant variation that spans both categories. Incidental or
spurious properties are the bane of effective perceptual category learning. Internship,
residency, and actual practice do much to advance the relevant skills, but even there,
some phenomena appear rarely, some may be incidentally correlated with other char-
acteristics, and the overall flow of encounters across a learning domain is haphazard.

PALMs were developed to address these problems, based on an emerging under-
standing of mechanisms of perceptual learning, its role in expertise, and the conditions
needed to optimize it. The goals include accelerating the growth of expertise and
making learning more comprehensive. The adaptive features of PALMs leverage a
number of now well-established learning principles, such as testing and spacing, and
use objective data both to guide learning and to certify mastery. The available evidence
(see below) suggests that the combined approach can accelerate expertise and produce
more comprehensive learning in a variety of domains.

Across various domains, PALMs use the same core features. Trials (learning
events) in PALMs consist of classification episodes in which one or more displays
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are presented and learners must make a response, such as classifying a display,
comparing displays, or distinguishing some feature or property. Accuracy and
response times are used for spacing, to determine progress and eventually mastery,
based on both accuracy and fluency. Feedback occurs at the trial level, after blocks of
trials, and in terms of levels of progress indicated periodically. Usually, mastery
criteria are implemented, such that learning continues until all learning categories
have been mastered. Progress tracking spans sessions and allows learns to return and
continue learning where they left off. In research investigations of PALMs with real
medical learners (medical students, residents, or practitioners), we usually employ
designs in which assessments are administered at pre-test and post-test and in a
delayed post-test, administered weeks, or sometimes months, later. Active control
groups are sometimes used, but comparisons to non-users (business-as-usual con-
trol) and comparisons of PALM users to more advanced practitioners (e.g., compar-
ing 3rd-year medical students to 2nd-year residents) have often been a more practical
methodology than subjecting a separate group of learners to some other intervention.

We have created and investigated PALMs in the areas of anatomy, cardiology,
dermatology, histopathology, obstetrics and gynecology, ophthalmology, radiology,
and ultrasound. Details for many of these interventions have been published or are
under review (Krasne et al., 2013, 2020; Rimoin et al., 2015; Romito et al., 2016;
Slaught et al., 2021).

5.5.2 Electrocardiography PALMs

Learning to discriminate pathologies underlying the patterns produced in 12-lead
electrocardiograph recordings used in the PALMs relies very heavily on perceptual
learning, since there are large variations among individual patients for both normal
patterns and in features associated with a given pathology, and relevant features are
embedded in varying degrees of “noise.” Thus, beyond knowing the names of the
categories and the general features associated with each, mastery primarily involves
more selective extraction of subtle features and detection of important relations, as
well as quicker and more effortless performance. Some of the relevant complexity is
illustrated by the electrocardiogram (ECG) traces in Fig. 5.1.

Here is a bit of background for understanding how to view a 12-lead ECG, such
as those shown in Fig. 5.1. Each of the 12 panels display 2.5 s traces of electrical
signals arising from different combinations of electrodes placed on the body in a
specified pattern. The vertical axis of the traces displays the electrical signal in
millivolts, and the horizontal axis displays time in seconds. Three electrical signal
traces are displayed at a time for 2.5 s before switching to another set of three traces.
The labels on the traces are standard, referring to the particular combination of
electrodes from which the recording is derived.

ECGs from two different normal patients are shown in Fig. 5.1a, b, whereas
Fig. 5.1c, d displays two patients with an acutely occurring type of heart attack
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B:  NORMAL ECG (Case 2)

A:  NORMAL ECG (Case 1)

C: ANTERIOR STEMI ECG

D: ANTERIOR STEMI ECG

Fig. 5.1 Examples of 12-lead echocardiograms (ECGs), as used in the ECG Morphology PALM.
(a) and (b) show two different normal cases. (c) and (d) show two different patients with anterior
STEMI. Note the complexity of the information displayed and the variation for cases within each
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arising in the anterior portion of the left ventricle, referred to as an anterior
ST-elevated myocardial infarction (STEMI).

These records illustrate two of the problems inherent in classifying ECGs as well
as in other medical classification tasks: Within any given diagnostic category, there
is a large range of variation (as can be seen in Fig. 5.1a vs. b and Fig. 5.1c vs. d); and
between diagnostic categories, there is a large overlap in appearance
(Fig. 5.1b vs. d). Of particular relevance in distinguishing the type of heart attack
shown are the traces within the dashed rectangles superimposed on each recording.
Although these traces appear quite similar, a key difference in determining that
Fig. 5.1d, but not b, represents an acutely occurring heart attack is that the upswing
following the large dip in traces V2 and V3 of d overshoots each trace’s baseline by
at least two of the small horizontal voltage lines prior to bending, whereas those in
the equivalent traces of Fig. 5.1b begin bending when they reach the baseline.
Diagnoses of a large number of cardiac disorders are made based on small differ-
ences such as these or even less obvious ones, occurring in one or more traces, and
expertise in picking out such differences requires many years of experience.

Because interpreting ECGs is difficult and critical to making rapid and accurate
diagnoses of cardiac problems, we developed PALMs to improve the early mastery of
this clinical tool. Most extensively, we studied, over a broad range of educational
levels and retention times, outcomes associated with an ECG Morphology PALM that
focuses on the shapes of the electrical signals, rather than their rhythmicity. We use
this specific PALM to illustrate some features of medically related PALMs and their
performance. Further detail and all of the data can be found in Krasne et al. (2020).

In our experiments on the ECGMorphology PALM, we evaluated its effectiveness
by comparing performance on pre-test assessment prior to PALM training and on a
post-test following PALM training. The ECG exemplars used in assessments had not
been seen previously and were different for pre- and post-tests. Effects of the PALM
intervention on classifying 12-lead ECGs into 15 different diagnostic categories were
examined for third- and fourth-year medical students (MS3 and MS4, respectively)
and emergency medicine residents in their first, second, and third years (EMR1,
EMR2, and EMR3). Individual progress through the PALM was tracked for each
individual in terms of accuracy and response times for instances of each diagnostic
category. Mastery criteria including accuracy, speed, and success across spaced delays
were applied to each diagnostic category, such that learning in the PALM by a given
learner continued until mastery was attained for each of the learning categories. The
durations of participation required to reach mastery varied by educational level,
ranging from 88 � 32 min for MS3 students to 46 � 24 min for EMR3 residents.

Figure 5.2 shows results of the ECG Morphology PALM for a range of partic-
ipants from MS3s to EMR3s based on pre-test and post-test performance on an

⁄�

Fig. 5.1 (continued) category. Becoming able to accurately choose a diagnostic category from
these displays requires perceptual learning to select relevant information, detect subtle features, and
extract important relations, as well as ignore irrelevant variations (see text)
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Fig. 5.2 Effect of the ECG Morphology PALM on ECG interpretation skill. Upper panel: Percent
accurate classification shown as a function of educational level for ECG interpretation before
(orange bars or gray in grayscale version) and after (blue bars or black in grayscale version)
completing the ECG Morphology PALM for the first time. MS3 and MS4 were medical students
in years 3 and 4; EM R1, EM R2, and EM R3 were emergency medicine residents in years 1, 2, and
3. Lower panel: Fluency, defined as accurate responding on assessment ECGs with a response time
�15 s is shown as a function of educational level. For both panels, numbers of participants are
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assessment of ECG interpretation. We used two primary measures: accuracy,
defined as proportion of correct responses made within the 30 s allotted time period
for each trial, and fluency, which measures the fraction of responses that were both
accurate and completed within 15 s. By examining responses made within a shorter
target time, the fluency measure aims to capture changes in perceptual extraction of
information and progress toward automaticity rather than simply the ability to
consciously analyze the ECG.

Initial (pre-test) performance reflected educational level. Performance following
the PALM training greatly improved and was much more equalized across the
different training levels. Besides the robust improvement for participants at all stages
of medical training, the comparisons across educational levels provide evidence that
PALM training leads to acceleration of proficiency in these skills relative to con-
ventional training. Note that 3rd- and 4th-year medical students at the end of PALM
use achieved levels of performance that exceeded pre-test performance of emergency
medicine residents in years 1, 2, and 3. Interpreting ECGs is an important part of
emergency medicine training, and residency provides considerable exposure to
ECGs and opportunities to develop these skills. The monotonic increase in pre-test
scores for EM1 through EM3 suggests that proficiency does increase across years of
residency. By comparison, however, only 1–2 h of the ECG Morphology PALM
produced much larger gains, such that PALM-trained medical students not only
exceeded residents’ pre-test accuracy in classifying ECGs, but did not differ much
from residents’ post-test accuracy scores.

In the fluency data, some of these patterns were even more pronounced. There,
3rd- and 4th-year medical students at post-test substantially outperformed residents
in any year who had not undergone PALM training. It is also clear, however, that
residents’ fluency benefitted greatly from the PALM, with EM2s and EM3s going
from 43 and 49% to 78 and 77%, respectively. As with the accuracy data, there was a
clear increase in pre-test fluency across years of residency, suggesting that conven-
tional training does improve these skills, but these gains were somewhat subtle
(37–49% from EM1 to EM3) compared to the gains from the 1–2 h PALM (which
led to gains in fluency of 32, 35, and 28 percentage points for the EM1, EM2, and
EM3 groups, respectively). The gains in both fluency and accuracy suggest that this
adaptive perceptual learning intervention effectively addressed both discovery and
fluency aspects of perceptual learning (Kellman, 2002). The especially large gains in
fluency suggest that PALM training may specifically impact aspects of learning that
are relatively poorly addressed through conventional instruction or apprenticeship
(although it is also possible that fluency gains appear to exceed accuracy gains due to
a ceiling effect in the accuracy data).

⁄�

Fig. 5.2 (continued) shown below the training level on the abscissa. For all groups and measure-
ments, the post-test performance was statistically better than the pre-test performance with
P < 0.0001 for all pre-/post-test comparisons except for R3 Accuracy, for which P ¼ 0.0045
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Fig. 5.3 Delayed test effects of ECG Morphology PALM training on ECG assessment perfor-
mance. Left-hand bars in each pair (orange in color version of the figure; gray in grayscale version)
represent trainees at several educational levels who had no previous ECG PALM experience. Right-
hand bars in each pair (blue in color version of the figure; black in grayscale version) represent
current performance on the same assessment for trainees at the same educational level who had
completed the ECG PALM approximately 1 year previously. Numbers of participants are shown
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We were able to assess some of the long-term effects of completion of the ECG
Morphology PALM by testing a year later participants of equivalent educational
level who had or had not previously used the PALM. These data can be seen in
Fig. 5.3. (The data are labeled as “pre-test” scores because these learners went on to
complete the PALM afterward.) At each level, participants who had completed the
1–2 h PALM a year or so earlier outperformed peers who had not done so. With the
exception of the accuracy performance of R3 residents (for which P ¼ 0.07), both
accuracy and fluency scores for trainees who had completed the PALM approxi-
mately 1 year earlier were statistically significantly higher than those for trainees at
the same educational level but with no previous ECG PALM training. Effect sizes
were large for all fluency comparisons and were medium to large for accuracy
comparisons. Another comparison that can be made from the data of Fig. 5.3 is
the relative effectiveness of the PALM training versus that of the clinical experience
of the emergency medicine residents during the previous year. The accuracy perfor-
mance of residents completing ECG PALM training 1 year previously is comparable
to or greater than that of residents 1 year more advanced who had spent the previous
year in the clinic but without PALM training (compare right hand [black or orange]
bars for MS4, EMR1, and EMR2 with left hand [gray or blue] bars for EMR1,
EMR2, and EMR3, respectively). In comparing fluency performance, the
effectiveness

of the PALM is even greater than that of the additional year of clinical experience
of residents in the next highest year of training. These results indicate substantial
lasting gains from PALM training. We know of no other learning interventions that
have been shown to produce meaningful and enduring learning gains a year later
from a 1–2 h activity.

5.5.3 PALMs in Other Medical Learning Domains

The learning principles and algorithms in PALMs have broad applicability, and they
have proven to be useful in many domains, including mathematics and STEM
learning (Kellman et al., 2010; Mettler, Massey, et al., 2020; Unuma et al., 2016),
chemistry (Mettler, El-Ashmawy, et al., 2020), music (Bufford et al., 2016) and
aviation training (Kellman & Kaiser, 1994). As mentioned earlier, we have devel-
oped and tested PALMs to improve the learning of difficult perceptual classifications
in a variety of other medical learning domains, including histopathology (Krasne
et al., 2013), dermatology (Rimoin et al., 2015; Slaught et al., 2021), and trans-

⁄�

Fig. 5.3 (continued) below the educational level on the abscissa along with P values (two-sided) for
assessment performance differences between those with and those without the ECG PALM
experience the previous year. For accuracy, effect sizes were d ¼ 0.7, 1.7, 0.5, and 0.7, and for
fluency, they were d ¼ 1.3, 1.9, 1.8, and 0.8 for MS4, R1, R2, and R3 trainees, respectively
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esophageal echocardiography (Romito et al., 2016). Uniformly, we have found that
PALM training appears to produce large, significant, durable improvements in
performance for a variety of clinical tests and presentations. PALMs or elements
of PALMS are increasingly being applied by others interested in improving medical
learning (e.g., Guerlain et al., 2004; Sha et al., 2020; Perham et al., 2015), have been
evaluated in a systematic review (Guegan et al., 2020), and have been the subject of
favorable commentaries in medical journals (e.g., Evered, 2018; Waite et al., 2020;
Weller, 2016).

In addition, surveys that we implemented early on in conjunction with our first
medical PALM applications, those for training basic dermatology features and
histopathology processes, demonstrated strong support for PALM implementation
in the curriculum, with MS1 students averaging 4.5/5 on a Likert scale evaluating
whether there should be comparable modules for other areas of the curriculum and
MS2 students averaging 4.6/5 for the same issue (Krasne et al., 2013; Rimoin et al.,
2015).

Finally, the gamification features discussed earlier in this chapter were clearly
recognized and influenced the positive response to the PALM modules, with stu-
dents spontaneously including characterizations such as the following:

. . . really nice...and made it seem like a game, which I enjoyed and wish we had more of.
. . . lots of examples, game format made it fun
The derm and histo ‘games’ were extremely helpful . . .
. . . it was fun and stress-free, more like a game as opposed to a test.
The game-type set up made the exercise fun
—repetition—use of images—“game” format—diagnosis—interactive-ness of the

program

5.5.3.1 Factual Learning, Simulation, and Higher-Order Pattern
Recognition in PALMs

Although we have emphasized applications to perceptual classifications, PALMs
also have considerable potential to enhance other kinds of learning. The adaptive
learning algorithms in PALMs are well-suited to learning of factual material, and
evidence suggests that the ARTS system in particular offers advantages over other
spacing schemes (Mettler et al., 2016). Many aspects of medical learning involve
substantial learning of facts, concepts, and procedures, all of which can be enhanced
by the testing, spacing, and mastery components of ARTS. Yet another difficult but
common learning challenge involves integration of various signs, symptoms, patient
characteristics, and test results in medical diagnosis. This can be considered a higher-
order pattern recognition problem, which, although it may involve perceptual com-
ponents, is not primarily perceptual. The formal similarity to perceptual learning, in
terms of discovering distinguishing features and important relations, and acquiring
fluency, however, has suggested that a PALM approach may be capable of acceler-
ating learning in diagnostic domains.
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Some work has tested this hypothesis. Kellman and Mettler (2011) studied
PALMs in a US Army project aimed at teaching information and diagnostic skills
at different levels. The focus was on chief complaints that might present among
military personnel and their families at military installations. Adaptive factual
learning modules (FLMs) were developed to teach the basics of specific medical
conditions that might lead to a particular chief complaint (e.g., meningitis, system-
atic viral infection, subarachnoid hemorrhage, migraine, or tension headache for the
complaint of headache). Integrated factual learning modules (IFLMs) mixed learn-
ing across medical conditions with the aim of sharpening long-term retention and
understanding of distinctions. Finally, cognitive task modules (CTMs) presented
novel cases that trained both the procedural aspects of treatment and investigatory
steps related to different specific conditions as well as differential diagnosis based on
sets of characteristics, signs, symptoms, and test results. Modules at all levels used
the ARTS system for adaptive learning and mastery. Undergraduate participants
with health-related career interests served as participants. Results showed substantial
advantages of adaptive learning modules over conventional study materials, and they
also showed that the sequence from FLMs to CTMs added considerably to mastery
and later diagnostic accuracy. PALMs have also shown great utility in anatomy
learning, which is a combination of factual and perceptual learning. Suites of
anatomy learning focused on specific body areas or for different purposes (e.g.,
surgery vs. physical therapy training) have been developed by Insight Learning
Technology, Inc. and Primal Pictures, Inc., a leading distributor of high-quality
anatomy graphics online.

In another project (Benharash et al., 2015), PALMs were applied to simulation in
trauma care. The goal of the project was to develop an integrated simulation and
training platform based on perceptual and adaptive learning principles, focused on
training combat medics in the factual and conceptual underpinnings, diagnosis, and
emergency treatment in hemorrhage control. The trauma care simulator displayed
vital signs of a patient, presented other information, and could present queries or
cases. Training interleaved several levels of interactive learning. Recognition trials
trained learners to fluently recognize important indications, such as a vital sign out of
normal limits. Some examples included blood pressure, respiration rate, and cardiac
arrhythmias. Diagnostic trials involved higher-order pattern recognition from com-
bined simulator and case information inputs. Examples included hypovolemic
shock, neurogenic shock, tension pneumothorax, cardiac tamponade, and traumatic
brain injury. Treatment trials involved administration of medications, electric shock,
airway interventions, etc. and assessment of their consequences in the simulator.
Some examples included pressure or tourniquet for hemorrhage, shock for ventric-
ular tachyarrhythmias, morphine administration, and resolution of airway issues
through intubation, O2 administration, or cricoidotomy. Finally, sets of factual
learning points were included to teach the MARCH algorithm, which gives an
order of priority for initial assessment and treatment for trauma victims (M, massive
bleeding; A, airway; R, respirations; C, circulation; and H, head).
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One group learned entirely in the Trauma Care Simulator PALM, and a control
group learned from actual study materials used in basic military medical training.
The learning content was the same in both groups.

Assessments were given half within the simulator environment and half as paper
and pencil tests. The Trauma Care Simulation PALM produced substantially better
accuracy in performance on both types of tests, both in immediate post-tests and in a
delayed post-test 1 week later. Figure 5.4 shows the patterns of data for the
simulation-based assessments. The four learning areas (diagnosis, MARCH algo-
rithm, recognition, and treatment) are shown from left to right for the pre-test, post-
test, and delayed post-test, given 1 week later. There are conspicuous advantages for
the PALM group in diagnostic accuracy, recognition, and selection of treatment
actions. These are evident at immediate post-test and also after a delay. For the
MARCH algorithm, the group trained using simulation and adaptive learning
showed a trend toward better learning at immediate post-test, especially given an
advantage for the control group at pre-test, but the difference in learning gains was
not different between groups at delayed post-test. The treatment category appeared
to be the hardest to learn, in terms of immediate post-test scores, but what was
learned declined very little between immediate and delayed post-tests for the simu-
lation group, especially in comparison with the control group. This might indicate
greater incorporation of pattern recognition components when the learning occurred

Fig. 5.4 Assessment data by Trial Type and Assessment Phase for trauma care training. Blue
bars (black in grayscale version) in each pair show control group data. Red bars (gray in grayscale
version) show data from the Trauma Care Simulation PALM. Pre-test, post-test, and delayed post-
test data are shown for the four types of learning trials: diagnostic trials, MARCH algorithm trials,
recognition trials, and treatment trials. Error bars show � standard error of the mean
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in the PALM format. Oddly, the PALM group outperformed the control group on
MARCH algorithm content, which might be considered the most purely declarative
and procedural learning content in the study, when tested in paper and pencil format
(as well as in all of the other learning categories).

These results suggest potential for much broader application of perceptual and
adaptive learning technologies in both factual learning in medicine and in more
complex settings, including simulation, integration of information in diagnosis, and
the application and assessment of treatments.

5.6 Conclusion

Instruction and learning in medical domains can be improved by application of
findings from the science of learning and by advances in technology. For new
approaches or enhancements to be effective requires fruitful combinations of
these. We have considered a number of current and emerging ideas with already
realized or potential value in medical education. Scientific research and technolog-
ical implementations involving perceptual learning add value both by broadening
our conceptions of what learning includes and how it can be systematically
advanced. Advances in digital technology and principles of learning make possible
adaptive methods that can personalize learning and make it more efficient, as well as
track progress and ensure more comprehensive mastery. Efforts in these areas, basic
and applied, are also expanding ideas of mastery to include fluency, automaticity,
and transfer to new situations. Adaptive learning technologies have powerful appli-
cations when combined with perceptual learning, as we have illustrated, and they
also have compelling potential to improve factual and procedural learning. Games
and gamification may be best considered in terms of useful elements; there is no
magic for learning that accrues just because something is a game. Specific compo-
nents of gaming may have value in learning, especially those that have been or could
be subjected to experimental work using objective measures of learning that can test
their effectiveness and reveal best practices. Promising elements include progress
tracking, feedback, and potential effects on motivation, whereas challenges include
avoidance of distracting seductive details, extraneous cognitive load, and fostering
intrinsic motivation that might persist outside of the gamified learning environment.
The continuing emergence of findings from scientific research on learning and new
technologies in which they can be instantiated promises a bright future for evidence-
based advances in instruction, but these will also require continuing, committed, and
collaborative efforts from domain experts and learning scientists to devise, test, and
implement new methods that truly add value.
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