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The ability to form shape representations from visual input is crucial to perception, thought, and action.
Perceived shape is abstract, as evidenced when we can see a contour specified only by discrete dots, when
a cloud appears to resemble a fish, or when we match shapes across transformations of scale and
orientation. Surprisingly little is known about the formation of abstract shape representations in biolog-
ical vision. We report experiments that demonstrate the existence of abstract shape representations in
visual perception and identify the time course of their formation. In Experiment 1, we varied stimulus
exposure time in a task that required abstract shape and found that it emerges about 100 ms after stimulus
onset. The results also showed that abstract shape representations are invariant across certain transfor-
mations and that they can be recovered from spatially separated dots. Experiment 2 found that encoding
of basic visual features, such as dot locations, occurs during the first 30 ms after stimulus onset,
indicating that shape representations require processing time beyond that needed to extract spatial
features. Experiment 3 used a convergent method to confirm the timing and importance of abstract shape
representations. Given sufficient time, shape representations form automatically and obligatorily, affect-
ing performance even in a task in which neither instructions nor accurate responding involved shape.
These results provide evidence for the existence, emergence, and functional importance of abstract shape
representations in visual perception. We contrast these results with “deep learning” systems and with
proposals that deny the importance of abstract representations in human perception and cognition.

Keywords: vision, perception, object recognition

An object’s shape is a property crucial to its identity and
function, and perception of shape is accordingly one of our most
important capabilities. In human perception, the visual sense pro-
vides the most efficient and detailed information about shape. As
a result, perception and representation of object shape through
vision are basic to thought, action, and learning.

Shape is complex, however. Because shape can be described at
different levels and in different ways, understanding shape percep-
tion is an enterprise that involves properties of objects but also
properties of mind. The ways in which we perceive and represent
shape are a subset of all possible information encoding schemes,
and they are not well understood. Shape representations must
capture ecologically important similarities among objects and al-
low classification of natural kinds despite variations (Kellman,
Garrigan, & Erlikhman, 2013). Such representations must also be
obtainable despite variations in viewing conditions and contexts.
Although, to be useful, our shape representations must depend on
relevant properties of physical objects, they are not simple or
literal reflections of object properties.

The Gestalt psychologists (e.g., Koffka, 1935) were among the
first to ponder deeply the nature of shape in psychological and
physiological processes. Shape, as represented in the brain, is

different from the collection of stimulating elements (Koffka,
1935); it depends both on the stimulus input but also on organizing
activity in neural processes (Köhler, 1929). Shape is abstract:
What similar shapes have in common is not their constituent
elements, but the spatial relations of the parts.

Even today, how we perceive and represent abstract shape is not
well understood. Work in cognitive science and neuroscience
offers a variety of foundations and clues, but relatively little work
has addressed the processing and representation of abstract shape.
In the earliest stages of cortical visual processing, neural units
register retinal regions of oriented contrast (Hubel & Wiesel, 1968;
Zhang & von der Heydt, 2010). The collection of these neural
responses, by themselves, does not comprise shape, nor could
these initial encodings support matches of shape across transfor-
mations, such as size or orientation, or allow observers to recog-
nize the same shape made from differing local elements.

Neural evidence suggests that abstract shape processing
likely occurs in later visual areas. Single-cell recording of V4 in
rhesus monkeys has found cell populations that are sensitive to
shape features, such as curvature, convexity, and sharpness
(Pasupathy & Connor, 2001). V4 neurons have also been found
to have positional invariance, showing similar patterns of acti-
vation regardless of a stimulus’s location in visual field (Gal-
lant, Connor, Rakshit, Lewis & Van Essen, 1996). The inferior
temporal cortex is also implicated in abstract shape processing.
Cell populations in anterior IT remain sensitive to certain
shapes, even when the size and positions of those shapes are
modified (Ito, Tamura, Fujita, & Tanaka, 1995).

In cognitive science and computer vision, researchers have
sought formal descriptions suitable for shape representation. Some
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have proposed that 2-D shapes are represented as abstract skele-
tons whose axial branches are formed based on symmetries within
the shape (Blum & Nagel, 1978; Feldman & Singh, 2006; Feldman
et al., 2013; Sebastian & Kimia, 2005). Another line of research
has proposed that contour shape may be represented by sets of
constant-curvature segments (Garrigan & Kellman, 2011).

In contrast to these neural and formal efforts, rather little work
has addressed abstract shape in human perceptual processing.
Dating back to the Gestalt psychologists (e.g., Koffka, 1935;
Wertheimer, 1923), there are intuitive demonstrations for the re-
ality and importance of shape as something more than the encod-
ing of local stimulus elements. Hochberg (1968) advanced the idea
that abstract “schematic maps” are synthesized from successive
fixations in scene perception. However, little is known about how
and when abstract representations form. In the present work, we
focus on abstract shape representations, seeking clear psychophys-
ical evidence for their existence and the time course of their
formation.

The issue of encoding shape abstractly is especially timely, we
believe, because of recent developments and trends in a number of
fields, including cognitive science, neuroscience, and artificial
intelligence. Perhaps because of the difficulty in understanding
issues of how structure, such as object shape, can be extracted by
perceptual systems and represented, approaches in artificial intel-
ligence in recent years have often omitted explicit concepts of
structure or shape in favor of using elaborate statistical approaches
to perform object classification tasks (cf. Chomsky, 2012). Tre-
mendous progress has been made in getting artificial systems to
correctly identify objects present in photographs (e.g., He, Zhang,
Ren, & Sun, 2016; Krizhevsky, Sutskever, & Hinton, 2012; Simo-
nyan & Zisserman, 2014). Recent advances in “deep learning”
systems have received a great deal of attention, both scientifically
and in the popular media. It is unclear, however, to what degree, if
any, such systems performing object classification make use of
shape information. Although one might expect that recognizing
whether a scene has a rabbit in it would involve segmentation
processes that distinguish the rabbit from the background and
construct a shape description that is matched to shape information
about rabbits, that would not be a correct characterization of the
most successful approaches. Deep learning systems, or more spe-
cifically, deep convolutional neural networks (DCNNs), process
image details in a very large number of layers and at different
scales, intermixed with smoothing or noise filtering operations.
Encoding object shape is not a deliberate goal of such approaches,
and the combination of filtering operations and training used in
these systems may not lead to encoding of shape at all. As an
example, Zhu, Xie, and Yuille (2016) found that DCNNs trained
on natural images performed worse when tested on images with
reduced backgrounds, although the target object remained intact.
Conversely, these systems could classify images well above
chance performance even when the target object had been fully
removed from the scene.

DCNNs do not explicitly represent object shape. Whether they
implicitly capture some shape properties or whether they are
formally incapable of doing so in their present form is an issue of
current investigation. We recently tested VGG, a popular and high
performing convolutional network trained for object recognition
(Simonyan & Zisserman, 2014), on glass ornaments whose ab-
stracted shape matched an animal from one of the network’s

trained object categories. Figure 1 shows an example. The object
shown is readily classified by human observers, based on its shape.
VGG’s top 5 classification responses for this object, from most to
least probable, were: “hour glass,” “ladle,” “can opener,” “loupe,”
and “wash basin.”

Other pictures made of glass, as well as silhouettes and outlines
of objects meet a similar fate (Baker, Lu, Erlikhman, & Kellman,
2018). What is the issue here? Why is the glass bunny obvious to
human observers but is classified as a can opener by an artificial
system (that achieves 92% performance on image sets used to
evaluate systems in computer vision)? Convolutional neural net-
works not only use context but seem to make especially strong use
of texture information, which would be expected based on the
nature of the convolution operations that extract image information
from local patches. What appears to be missing is a representation
of abstract shape. For human observers, a bunny made of glass is
surely unlikely to hop into your garden and is obviously lacking
normal bunny surface texture, but the shape, even when cast in
glass, is readily extracted and used for classification. One might go
so far as to say that abstract shape information dominates human
classification. After all, if texture were deemed most important in
the classification responses, this object would not be labeled as a
rabbit. The immediate and spontaneous recognition of the object’s
identity based on shape suggests fundamental differences between
object recognition in humans and current artificial systems. This
brief discussion is not meant to be the final word in comparing
human and artificial vision systems, as there are issues relating to
tasks, training, and so forth of the latter that are not the focus here.
(For a more detailed treatment, see Baker et al., 2018.) Rather, we
highlight the understanding of abstract shape perception and rep-
resentation in humans as important both for understanding how

Figure 1. An example of an object whose shape is readily classified by
human observers but not by deep convolutional neural networks (DCNNs);
see text. (From Baker, Lu, Erlikhman & Kellman, 2018).
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biological systems encode and classify objects, as well as for
comparing the capabilities and limits of human and artificial
systems. Further, we believe the limitations of artificial systems
regarding shape processing derive in large part from our current
lack of understanding of abstract shape perception and represen-
tation. Improving our understanding of shape abstraction in bio-
logical vision may offer ideas for enhancing future artificial sys-
tems. After considering the results of several experiments, we
return to these issues in the General Discussion.

Within psychology, cognitive science, and neuroscience it also
seems crucial to define and clarify the role of abstract shape.
Somewhat paralleling trends in artificial intelligence, some recent
and influential proposals have suggested that we do not really have
abstract representations in perception or cognition. Barsalou
(1999, 2003) argued against the existence of abstract representa-
tions in his proposals regarding perceptual symbol systems (PSS).
The PSS hypothesis is that there really are no abstract represen-
tations in the usual sense; rather what has been considered as such
really consists of nonabstract “re-enactment” or “simulation” of
sets of basic sensory features that are activated when we perceive
(Barsalou, 1999, 2003). Thus, abstract concepts “are perceptual,
being grounded in temporally extended simulations of external and
internal events” (Barsalou, 1999, p. 603). More concretely, as
Barsalou (2003) put it:

The basic idea behind this mechanism is that association areas in the
brain capture modality-specific states during perception and action,
and then reinstate them later to represent knowledge. When a physical
entity or event is perceived, it activates feature detectors in the
relevant modality-specific areas. During visual processing of a car, for
example, populations of neurons fire for edges, vertices and planar
surfaces, whereas others fire for orientation, color and movement. The
total pattern of activation over this hierarchically organized distrib-
uted system represents the entity in vision(e.g., Zeki, 1993; Palmer,
1999). Similar distributions of activation on other modalities represent
how the entity feels and sounds, and the actions performed on it.
(Barsalou, 2003, p. 1179)

These ideas have much in common with those of classical
empiricist philosophers, such as Locke, who believed that complex
ideas in perception and cognition were the products of associative
combination of basic sensations (for discussion, see Kellman &
Arterberry, 2000; Kellman & Massey, 2013). They have been
criticized for failing to offer a coherent account of abstract ideas in
cognition (e.g., Landau, 1999; Ohlsson, 1999) as well as for failing
understand the abstract nature of perception (Kellman & Massey,
2013). In fact, Gestalt discussions from almost a century ago
(Koffka, 1935; Wertheimer, 1923) provided compelling arguments
against the idea that perception could be understood as collections
of sensory activations. Instead, understanding the character of
perception, in general, and shape, in particular, requires abstrac-
tion, as in the classic adage that “the whole is different from the
sum of its parts” (Koffka, 1935).

Our immediate purpose, however, is not to explore these issues
in depth but to recognize that understanding of abstraction in
perception is important for general views of perception and cog-
nition. Much of the trend in several fields in omitting or dismissing
abstract representations stems from our relatively poor understand-
ing of how these actually work (cf., Barsalou, 2003, on difficulties
with the notion of abstraction in cognitive science). One aim of the

present work is to show psychophysically clear evidence of ab-
stract shape representations, how they are processed, and their
functional importance. Such efforts will hopefully lead to progress
in understanding perception and abstraction in biological as well as
artificial systems.

Probing abstract representations of shape requires special stim-
uli. A commonplace yet remarkable fact is that humans readily
perceive shape from arrangements of dots. In Figure 2, the spaced,
disconnected dots appear to specify a closed contour with a deter-
minate 2D shape. No closed shape is given in the display itself, and
many possible contours could connect the dots. We leveraged
displays of this sort to probe the brain’s formation of abstract
representations of shape, as the stimuli themselves do not contain
connected contours or shape features. We used patterns of black
and white dots, positioned along the contours of randomly gener-
ated virtual objects (see Figure 2). Displays of this kind also
allowed us to manipulate the constituent elements of the display
without changing the global shape percept. Displays based on
groupings of dots have been used by other investigators to explore
a variety of grouping and detection phenomena (Lezama, 2015;
Pizlo, Salach-Golyska, & Rosenfeld, 1997; Sha’ashua & Ullman,
1988; Smits & Vos, 1987; Uttal, 1973).

The present work focused on the abstract 2D shape representa-
tions extracted from such displays. To isolate abstract shape, we
used tasks requiring comparison of shapes extracted from dot
patterns across transformations of position, scale, and orientation.
If abstract shape representations exist, and if an observer extracts
a certain abstract shape from a dot array, s/he should be able to
judge accurately whether a different dot array has the same shape,
even if the second array contains a scaled or rotated version of the
shape. Experiment 1 tested whether such judgments are possible
and measured the processing time needed to form a shape repre-
sentation that supports comparison across changes to local features
and rigid 2D transformations. Experiment 2 tested whether abstract
representation of shapes requires processing time over and above
the time needed to register local features. In Experiment 3, we used
a different, convergent method to show the existence and function
of abstract shape representations. Subjects were tasked with com-
paring the spatial positions of dot patterns shown in sequence, with
no reference to shape. When dots changed position, they did so in
a way that either altered the global shape outline or left it the same.
Whereas accurate registration of local features would facilitate

Figure 2. Example of the displays used in Experiment 1.
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performance on this task, abstract shape representations might
make it worse, in that detection of dot position change might be
overshadowed by the formation of obligatory abstract shape rep-
resentations.

Experiment 1

In Experiment 1, we tested subjects’ ability to determine if the
shape outlines formed by two dot patterns are the same or different
across a range of encoding times. We presented subjects one novel
shape for a varied duration, followed by a mask and a second
shape. The second shape could differ from the first both in global
outline and in position, size, or orientation on the screen. Subjects
were instructed to report shapes as different only if the second
shape had a different global outline than the first.

Method

Participants. Twenty-five (21 female, four male, Mage �
20.2) undergraduates from the University of California, Los An-
geles participated in Experiment 1 for course credit. All partici-
pating subjects had normal or corrected to normal vision.

Displays and apparatus. Novel amoeba-like shapes were
generated for each trial. The displays contained no continuous
contours that might give shape information. Displays were com-
prised of 25 black and white dots evenly sampled along the
contour and were displayed on a gray background screen (see
Appendix A for more information).

Subjects were seated 71 cm from the 20-in. View Sonic Graphic
Series G225f monitor. The monitor was set to 1024 � 768 reso-
lution, with a refresh rate of 100 Hz.

The first display was presented at the center of the screen and
subtended up to 13.8 degrees of visual angle from the most
extreme left dot to the most extreme right dot (mean horizontal
length was 8.00 degrees). The second shape subtended up to 18.43
degrees of visual angle (mean horizontal length of 8.03 degrees).
(See Appendix B for more information).

Except when noted otherwise, all aspects of the displays and
apparatus in subsequent experiments were the same as in Experi-
ment 1.

Design. On each trial, two dot patterns were shown sequen-
tially, separated by a pattern mask. After the second pattern was
shown, subjects were asked if the second pattern had the same
shape as the first pattern. Nine presentation durations—30, 50, 70,
90, 110, 130, 150, 250, and 400 ms—for the first display were
presented in separate blocks of 40 trials each in a within-subjects
design. Subjects completed five practice trials with feedback in
which the first stimulus was presented for 500 ms and then began
the official experiment, where they received no feedback.

Procedure. Each trial began with a fixation cross for 300 ms
in the location of the first pattern, followed by a presentation of the
first pattern for a given duration (30–400 ms), which was in turn
followed by a mask of random dots for 50 ms. Following the mask,
a second shape was shown. The second shape could be the same as
or different from the first shape. Different shapes were generated
by taking the first shape and deforming its global outline (see
Appendix B). The second shape also underwent some transforma-
tion, regardless of whether or not its shape outline was altered.
There were four possible conditions for the transformation of the

second shape: rotation (5 to 20 degrees in either direction), scaling
(between .5 and 1.5 times original shape size), translation (up to
150 pixels in any direction), and no transformation. Dot patterns
were transformed in these ways to ensure that success on the task
required comparisons between abstract shapes.

The second shape was always shown for 1,000 ms, and was
followed by another mask for 300 ms. Subjects performed a forced
choice same/different task. They were instructed to report “Same”
if the two dot patterns had the same shape outline and to report
“Different” if the second pattern had a different shape outline,
irrespective of the rigid body 2D transformation. See Figure 3
below for a sample trial of Experiment 1.

Dependent measures and data analysis. We measured sub-
jects’ accuracy on the same/different task across the nine presen-
tation times for the first display. Data were analyzed by taking
each subject’s average performance for each of the nine presenta-
tion times, and then computing a group average and confidence
intervals. Performance was statistically compared across the sev-
eral exposure durations and to chance performance. To eliminate
possible effects of bias from subjects tending to say “same” or
“different,” we also used signal detection methods to measure
sensitivity (d=) as a function of encoding time. Finally, we used
logistic and piecewise regression analyses to identify the encoding
time beyond which a stable, abstract shape representation was
available (see below).

Results

Figure 4 shows the mean accuracy data for the 9 exposure
durations for the first display. Performance was better than chance
in all conditions except at the 30 ms exposure duration (all ts �
2.99; all ps � .01); at 30 ms, the mean accuracy of .508 (95%
confidence interval [.482,.533]) did not differ from chance,
t(24) � .64, p � .250.

Performance improved with encoding time, up to 110 ms, after
which it plateaued. To identify the point at which more processing
time ceased to produce improvements in the comparison task, we
fit the results to a psychometric function using the Palamedes
Toolbox (Prins & Kingdom, 2009). The maximum likelihood estima-

Figure 3. Sample trial for Experiment 1. The first display is on the left,
followed by a pattern mask. The second display could either have the same
shape as the first with some transformation (top right) or the shape could
be deformed in some way (bottom right).
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tion for the data is given by the function .5 � .293

1�e�48.476�x�.072�, where x
is the amount of processing time in seconds. By taking the second
derivative of this function, we identified the point at which per-
formance flattened. In these data, this transition point was at 99.1
ms. As another way of identifying this transition point, we used a
continuous piecewise regression, with a change of slope at one of
the experimental viewing durations between 50 and 250 ms. We
compared the R2 value for each of these seven regressions in order
to determine which possible transition point explained the most
variance in our data. R2 was highest (.617) for a piecewise regres-
sion whose transition point was at 110 ms, F(2, 222) � 178.60,
p � .001. There was a reliable difference in slope for observations
between 30 and 110 ms and for observations between 110 and 400
ms, t(2) � �12.46, p � .001. The piecewise regression gave a
predicted gain in accuracy of 3% per 10 ms before 110 ms, and less
than .2% per 10 ms beyond the inflection point. Piecewise regres-

sions with transitions at other points were significant, but ac-
counted for less of the overall variance.

Results were also analyzed using a signal detection theory
measure of sensitivity, with a correct detection of a change being
considered a hit and an incorrect change response being a false
alarm. The results are shown in Figure 5. The pattern of results was
almost identical to the data with accuracy in Figure 4, with
performance leveling off beyond 110 ms of encoding time.

Individual transformations. The design of Experiment 1
aimed at determining the time course for the construction of
abstract shape representations and tested for them by requiring
shape comparison across transformations. Our hypothesis was that
successful performance for all transformation types, with the pos-
sible exception of translation, would require an abstract shape
representation. Alternatively, it could be the case that the visual
system actually uses differing underlying representations to com-

Figure 4. Accuracy as a function of exposure duration in Experiment 1. Error bars show 95% confidence
intervals.

Figure 5. Sensitivity (d=) as a function of exposure duration in Experiment 1. Error bars show 95% confidence
intervals.
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pare displays that differ by translation, scaling, and rotation, in
which case performance as a function of exposure duration might
differ across transformation. To assess these possibilities, we ex-
amined each of the rigid 2D transformations separately. Figure 6
shows these results. Using the continuous piecewise regression test
described above, we looked for a transition point in each of the
transformations, looking for the regression with the highest R2

value. Results are shown in Table 1. R2 was highest when the
transition point was fixed at 110 ms for two of the three transfor-
mations. Notably, even in trials where no 2D transformation was
introduced, the data are best explained with a transition point at
110 ms. When the shape was scaled, a change of slope at 70 ms of
encoding time proved to explain the variance better than at 110 ms
(see Table 1). The earlier transition point identified for scaled
shapes is likely a statistical anomaly, driven by a particularly low
mean accuracy at 110 ms. This is also supported by the second
derivative of the logistic function test, which identified a transition
point at 102 ms. Apart from this outlier, the trajectory for scaled
transformation mirrors the other three conditions.

Discussion

From 30 to 110 ms of viewing time for the first shape, subjects
go from being unable to compare virtual shapes at better than
chance accuracy to achieving a consistent high level of discrimi-
nation between displays of the same or different shapes. Presen-
tation of a mask between the first and second display in this study
should prevent subjects from using apparent motion (Braddick,
1973) or visual icons (Sligte, Scholte, & Lamme, 2008; Smithson
& Mollon, 2006) in the comparison task. Because of the transfor-
mations used, encoding and comparison of local elements (dots)
from each display would not support accurate performance. These
arrangements aimed to require subjects to compare displays based
on an abstract representation of a global contour connecting the
dots in each display. That results were similar across differing
transformation types, and even for the no-transformation condi-
tion, suggests that a common abstract shape representation was
used in the task. This representation does not appear to be available
at the shortest presentation time tested (30 ms) but appears to be
fully available by about 110 ms. This contour must be constructed
in an object-centric, not retinotopic, format to make shape com-
parison possible across 2D transformations.

An open question these data raise is what is happening
between 30 and 110 ms of processing time. One possibility is
that viewers have access to partially formed representations of
shape during the time between when encoding begins and when
it is completed. Another possibility is that shape representation
is discrete but probabilistic. Under this hypothesis, comparison
between shapes can only be accurately carried out when a
complete abstract representation has formed, but there is a
distribution over the time this formation requires, with rather
low probability at 50 ms of processing time, and very high
probability with more than 110 ms.

Figure 6. Accuracy as a function of exposure duration for separate transformations in Experiment 1. Error bars
show 95% confidence intervals.

Table 1
Transition Point Estimated Using Logistic and Piecewise Linear
Regression by Condition in Experiment 1

Condition

Transition point (ms)

Logistic regression Piecewise linear regression

All transformations 99.1 110
Rotation 124.8 110
Dilation 102.0 70
Translation 100.0 110
No transformation 88.8 110
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The results suggest that a set of dots arranged along the contour
of a virtual shape produces an abstract shape representation. Our
task was designed to require comparison of abstract shape, and
participants’ similar performance across the transformation types
we tested is consistent with the use of such a representation. The
results of Exp. 1 suggest that abstract shape representations are not
immediately available from a display but require on the order of
110 ms to be fully formed.

Experiment 2

Experiment 1 showed that subjects could not produce their best
performance in comparing two dot patterns’ virtual contours with
less than 110 ms of processing time. The most natural explanation
is that the task required abstract representations not explicit in the
physical stimulus, and such representations take measurable time
to be constructed, beyond the time needed to register the physically
given elements in the display. Another possibility, however, is that
abstract shape becomes available as early as basic stimulus ele-
ments (dots) are encoded. The time course we measured may
simply reflect the time required for sensory encoding of the stim-
ulus elements. If this is the case, the results of Experiment 1 would
have little to do with time constraints on abstract representations of
shape per se. We test this possibility in Experiment 2 by testing
whether visual features are adequately registered even at the short-
est encoding time used in Experiment 1 (30 ms).

A variety of work in vision suggests that encoding of basic
features happens substantially faster than 110 ms (Ringach,
Hawken, & Shapley, 1997; Subramaniam, Biederman, & Madigan,
2000). Making a rigorous claim psychophysically about encoding
time for basic features is difficult, however. If no pattern mask is
used, processing of a display shown briefly will continue after the
stimulus is removed (Schultz & Eriksen, 1977; Sperling, 1960). In
that case, it is hard to make the claim that basic features were
registered within the display interval. Conversely, use of a pattern
mask halts processing but also tends to obliterate any records of
local features. Therefore, a task aimed at explicitly assessing
encoding of dots in specific locations, and using a pattern mask,
would reveal little in the way of such records, unless there is time
to recode elements into a more durable store (Coltheart, 1980;
Sperling, 1963, 1967). To avoid these two difficulties, we used an
indirect task, using detection of transformations between briefly
presented displays, where the second display might function as a
mask, but motion mechanisms might still reveal specific encoding
of the original elements. If subjects could succeed in classifying
transformations of dot patterns that depended on the spatial posi-
tions of the initial elements, it would provide evidence that abstract
shape representations involve time demands beyond those needed
for basic encoding of stimulus elements.

Method

Participants. Twenty-six (23 female, three male, Mage �
20.0) subjects participated in Experiment 2. Subjects were under-
graduates from the University of California, Los Angeles with
normal or corrected to normal vision who earned extra credit for
participating in the study.

Design. The experiment included 200 trials, including 100
rotational transformations (half clockwise, half counterclockwise),

and 100 scaling transformations (half larger, half smaller). Sub-
jects completed five practice trials with feedback to ensure they
understood the task before the main experiment began.

Procedure. Novel dot patterns generated the same way as in
Experiment 1 were displayed for 30 ms. Following a 10-ms inter-
stimulus interval with a blank screen, a second display was shown.
The second display had the same set of dots as the first, but the set
was either rotated clockwise or counterclockwise 10 to 25 degrees,
or it was scaled by a factor between 1.2 and 1.45 when enlarged
and between 1/1.45 and 1/1.2 when made smaller. Subjects were
first asked whether the dot display was rotated or scaled, and based
on their response, they were asked the direction of the transfor-
mation (clockwise or counterclockwise if subjects answered “ro-
tated,” and larger or smaller if subjects answered “scaled”). Trials
were scored correct only if subjects correctly answered both ques-
tions. Note that although the first and second displays had the same
abstract shape description in all cases, this task can be done via
apparent motion mechanisms operating on the individual dot ele-
ments, without computation of global shape tokens (Ullman,
1979).

Results

One subject’s data was removed because her performance was
more than three standard deviations from mean performance.
Analysis was carried out with and without her data with no
meaningful differences. Figure 7 shows the primary data from this
experiment, along with the 30-ms exposure duration condition
from Experiment 1. Mean accuracy for Experiment 2 was .93, 95%
confidence interval (CI) [.913, .944]. Performance in Experiment 2
was reliably higher than chance, t(6) � 149.30, p � .001, and
significantly different from performance in Experiment 1, t(30) �
18.15, p � .001.

Discussion

This experiment sought evidence that basic feature registration
(dots and their positions) could be accomplished even at the

Figure 7. Accuracy on the dot transformation task in Experiment 2. The
bar on the left shows accuracy for clockwise and counterclockwise rotation
of the set of dot elements, and for expanding or contracting scaling.
Accuracy on the abstract shape task of Experiment 1 for the same (30 ms)
exposure duration is shown on the right for comparison. Error bars show
95% confidence intervals.
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shortest interval tested in Experiment 1, substantially less than the
110 ms required to perform a task based on abstract shape. Sub-
jects in Experiment 2 showed nearly perfect accuracy when the
initial display was presented for 30 ms. In contrast, subjects in
Experiment 1 performed at chance at that exposure duration.
Accurate responding in Experiment 2 required that the spatial
locations were extracted from dots in the first display. If this were
not the case, subjects would have no reference with which to
compare dot locations in the second display, and performance
would suffer. We believe the “comparison” here comes from
incorporation of the two displays into basic motion computations
(Dawson, 1991; Ullman, 1979), but the requirement for stimulus
registration is implicit in that mechanism. Taken together, the
results of Experiments 1 and 2 suggest that early visual feature
registration occurs within 30 ms, but construction of abstract shape
representations requires additional processing time.

Experiment 3

In Experiments 1 and 2, we found evidence for the existence of
abstract shape representations by comparing the processing time
needed to perform a task that required an abstract shape descrip-
tion (Experiment 1) with the processing time needed for the
registration of physical features (Experiment 2). In Experiment 3,
we used a convergent method to reveal the existence and func-
tional effects of abstract shape representations.

Subjects were shown two dot patterns in sequence. Whereas in
Experiment 1, we directed subjects’ attention to shape—tasking
them to determine if the two dot patterns had the same shape—in
Experiment 3 we asked them to decide if any of the dots in the
second display occupied a different spatial position than the dots
shown in the first display. On a third of the trials, the dots did not
change position at all. On another third of the trials, dots were
displaced in a random direction. On the last third, dots were
displaced along the existing shape contour. Subjects’ assigned task
was to attend to the physical positions of dots on the screen, and
no mention of shape was made. Conceptually, this task requires no
processing of abstract shape; ideally, it would be performed by
registering exact positions of dots in the first display and detecting
differences from these positions in the second display.

Although this experiment was carried out to investigate issues of
abstract shape representation, it is also relevant to theories in
cognitive psychology that suggest that abstract thought and repre-

sentations are derived by the brain revisiting literal encodings of
sensory elements (in particular, the PSS hypothesis of Barsalou
(1999)). In contrast, we hypothesized that this paradigm might
reveal that after brief initial processing, encoding of local elements
is poor, especially when more abstract representations have been
derived from them.

Method

Participants. Twenty-five (17 women, eight men, Mage �
20.46) undergraduates from the University of California, Los
Angeles participated in Experiment 3 for course credit. All partic-
ipating subjects had normal or corrected to normal vision.

Displays and apparatus. Shape contours were generated us-
ing the same algorithm as in Experiment 1 and 2, but the 25 dots
for the first shape were sampled somewhat differently. Initially
evenly spaced dots were randomly assigned black or white color,
as in previous experiments, but in Experiment 3, the positions of
the dots were jittered along the shape contour so that the distance
between dots along the contour was not constant.

When the second array differed from the first, it was generated
in one of two ways. One way involved evenly sampling another 25
dots from the same shape contour, but with a different starting
point such that the sampled dots were at the midpoints between
sampled dots from the first array. Then, the same jittering proce-
dure was performed on the dots as in the first shape.

The other method for generating the second shape was by
displacing each dot from the first shape in a random direction, with
no requirement to remain along the shape contour (see Figure 8).
The average distance of dot displacement was equated for both of
these two methods.

To prevent subjects from adopting the strategy of saying “dif-
ferent” any time the second display’s dots were not arranged along
a virtual contour, we also included trials in which the dots in the
first display did not fall along a virtual shape contour, and the
second display’s dot positions could either match or differ from
the first’s. So, if subjects encoded information from only one of the
two frames, they could not reliably give the correct response based
on the characteristics of the stimulus they saw. Trials in which the
dots in the first display were not arranged along a shape contour
were not included in the analysis.

Design. The experiment used a 2 (presentation duration) � 3
(display transformation type) factorial design, with 40 trials per

Figure 8. Sample trial from Experiment 3. On the left is the first display and on the right are three possibilities
for the second display: (a) Dot positions are identical and only dot colors change, (b) dot positions have moved
along the virtual shape contour, or (c) dot positions are moved in a random direction.
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condition. Trial conditions are shown in Table 2. Presentation
duration for the first display was 30 ms on half of the trials and 150
ms on the other half. The 30-ms duration was chosen to be briefer
than needed to form an abstract shape representation, according to
the results of Experiment 1, and the 150 ms duration was chosen
to be longer than needed to form abstract representations. In a third
of the trials, the second display was identical to the first display. In
another third of the trials, the second display contained a pattern
with dots moved along the shape contour; and in the last third, the
second display contained a pattern with dots moved in random
directions. Dot colors were always randomly reassigned in the
second display.

Procedure. On each trial, two displays of black and white
dots were shown, one after another. Following presentation of the
second display, subjects were asked if the positions of any of the
dots had changed from the first display to the second. The first
display (shown for 30 ms or 150 ms) was always cued by the
presentation of a fixation cross for 300 ms and was followed by a
pattern mask of random black and white dots for 300 ms. The
second display was shown 1,000 ms following the pattern mask. A
second pattern mask was shown for 300 ms following the second
display, after which subjects performed a two-alternative forced-
choice task. They were instructed to say “different” if they judged
that any dots had changed position in the second display. They
were instructed to say “same” if they judged the dots in the second
display to be in identical positions to those in the first display.

Results

Figure 9 shows the accuracy results from Experiment 3. Detec-
tion of change in dot positions appears to be roughly at chance for

30 ms exposures of the first display in all conditions. At 150 ms,
performance was above chance when dots underwent random
position changes or did not move. When dots moved along the
virtual shape contour, however, performance was worse than
chance responding. A 2 (presentation duration) � 3 (transforma-
tion condition) analysis of variance (ANOVA), with both factors
within subjects was carried out to confirm these patterns. There
was a reliable main effect of presentation duration, F(1, 24) �
4.86, p � .004, and a reliable main effect of transformation
condition, F(2, 24) � 11.48, p � .001. There was a significant
duration by transformation interaction, such that accuracy at the
longer presentation duration was higher when the second display
was identical to the first, or when the dots in the second display
moved in a random direction, but was lower when the dots in the
second display moved along the existing shape contour, F(2, 48) �
43.31, p � .001.

When subjects had 30 ms to view the first display, performance
was near chance regardless of the second display condition. For
dots moving along the contour, subjects did reliably better than
chance, with a mean accuracy of .57, 95% CI [.51, .63], whereas
in the other two conditions chance performance fell within the
95% confidence intervals. These three conditions differed margin-
ally from each other (all ts � 1.99, all ps � .058).

When subjects had 150 ms to view the second display, all
conditions differed from chance performance. When dots in the
second display were moved along the shape contour, subjects did
significantly worse than chance, with a mean accuracy of .35, 95%
CI [.279, .418]. When dots in the second display were moved in
random directions, subjects performed significantly better than
chance, having a mean accuracy of .686, 95% CI [.637, .735].
Likewise, when dots occupied the same position in the second
display as in the first, subjects had a mean accuracy of .661, 95%
CI [.604, .718].

The data were also analyzed using signal detection measures.
We defined the signal as a change in dot positions between the two
displays. On this basis, a hit was a trial on which an observer
correctly detected a change in dot positions, whereas a false alarm
consisted of an observer responding that dot positions had changed
when in fact no dots had changed positions. The hit and false alarm
rates were used to calculate sensitivity (d=), shown in Figure 10.
Note that no sensitivity is given for when dots do not move
because that event is defined as the absence of signal. The analysis
could be framed in the reverse way (with “no change” defined as
signal), in which case the d= values would remain the same. We
defined the change as signal, as it seems more intuitive, allows for

Table 2
Conditions for Experiment 3

Display 1 Display 2
Exposure
duration

Correct
response

25 dots, along a shape contour Same 25 dots along the shape contour 30 ms Same
25 dots, along a shape contour Different 25 dots along the same shape contour 30 ms Different
25 dots, along a shape contour Different 25 dots, not along the shape contour 30 ms Different
25 dots, along a shape contour Same 25 dots along the shape contour 150 ms Same
25 dots, along a shape contour Different 25 dots along the same shape contour 150 ms Different
25 dots, along a shape contour Different 25 dots, not along the shape contour 150 ms Different

Figure 9. Accuracy data from the three transformation conditions in
Experiment 3. Error bars show 95% confidence intervals.
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simpler condition labels, and keeps the “no-signal” case identical
across the experimental conditions.

Inspection of the data indicates that observers had approxi-
mately zero sensitivity for both conditions when the duration of the
first display was 30 ms, as well as in the 150-ms duration for the
first display when dots moved along the contour. A 2 (condi-
tion) � 2 (presentation time) ANOVA found a significant inter-
action between the presentation duration of the first dot pattern and
the nature of the dot movement in the second display, F(1, 24) �
29.39, p � .001. There was a reliable main effect for both presen-
tation time, F(1, 24) � 47.89, p � .001 and type of dot movement,
F(1, 24) � 34.86, p � .001. Sensitivity was not significantly
different from zero in trials where the first dot pattern was shown
for 30 ms and dots were moved along the contour, t(24) � �1.225,
p � .233, nor when they were moved in random directions,
t(24) � �.672, p � .250. When the first dot pattern was shown for
150 ms, subjects’ sensitivity was not significantly different from
zero when dots were moved along the contour, t(24) � �.066, p �
.250, but was significantly greater than zero when dots were
randomly perturbed, t(24) � 8.604, p � .001.

Discussion

In Experiment 3, subjects were instructed to attend the physical
positions of dots on the screen, not to shape. No mention of shape
was made when explaining the experimental task. The data sug-
gest, however, that formation of abstract shape representations
exerted an important, and obligatory, effect on subjects’ perfor-
mance.

When displays were exposed for 30 ms, subjects showed
roughly chance accuracy and zero sensitivity to dot location
changes. In terms of abstract shape representations, this was ex-
pected because such representations take longer than 30 ms to
form. In terms of physical locations of elements, these would have
registered within 30 ms, but may have been prevented from being
encoded into a more durable representation by the pattern mask.
When subjects were given sufficient processing time to form an
abstract shape representation, performance on the dot position task
depended closely on whether overall shape cues were congruent or
incongruent with dot movements. For dots that moved randomly,
altering abstract shape, subjects at 150 ms were well above chance
in detecting the second display as different. For dots that retained
the same position, both local position cues and overall shape

remained the same, and subjects performed above chance in de-
tecting that that first and second displays were the same. Most
crucially, when dots were shifted along the contour between the
first and second displays, the abstract shape representation (pre-
served) was incongruent with local dot positions (altered) with
reference to the perceptual decision to be made. Here, subjects
were reliably lower than chance in reporting whether the physical
positions of the dots had changed and in signal detection analyses
showed zero sensitivity for detecting dot displacement.

These results have several implications. First, the contrast be-
tween the 30-ms and 150-ms presentation conditions provides
further evidence that abstract shape representations take time be-
yond 30 ms to form. Specifically, the difference in conditions at
150 ms seems to be a consequence of the formation of an abstract
shape representation; no such difference was found at the 30-ms
presentation duration. Second, use of abstract shape representa-
tions appears to be obligatory: Despite having no role in the
assigned task, whether overall shape was preserved or changed
between the first and second displays appeared to dominate sub-
jects’ response patterns. Third, the results provide strong evidence
that abstract shape representations are derived from, but do not
consist of, sets of feature activations that were present during
initial sensory registration. Despite instructions to encode local dot
positions, this study provides no evidence that local dot positions
were encoded into any enduring representation, even at the longer
presentation duration. Although abstract shape depends on regis-
tration of sensory elements, these inputs appear to be rapidly
discarded. These results have implications for some proposals
about the nature of abstract representations in perception and
cognition. According to the PSS hypothesis proposed by Barsalou
(1999, 2003), abstract ideas are not in some special abstract
representational format; rather, they involve simulating activation
of early sensory areas responsible for detecting features physically
present in the stimulus (see Kellman and Massey, 2013, for further
discussion). Such a system would have little difficulty detecting a
difference in dots displaced along a virtual shape contour, as none
of these early feature activations would be the same from the first
display to the second. Instead, the role of early sensory activations
appears to be to allow more abstract relations to be computed, with
the raw material rapidly discarded rather than encoded in an
enduring way. These results reflect classic insights, by the Gestalt
psychologists and others, into the relational and abstract nature of
perception (Gibson, 1979; Koffka, 1935; Kellman & Massey,
2013; Michotte, Thinés, & Crabbè, 1964).

General Discussion

The purpose of this work was to investigate the psychological
reality of abstract shape representations. We had two hypotheses
about these representations. The first hypothesis was that if ab-
stract representations of shape exist, their formation requires pro-
cessing time beyond time needed to register the local spatial
features composing the shape in a visual scene. The second hy-
pothesis was that these shape representations may not preserve
information about the spatial features from which they were orig-
inally constituted.

In Experiment 1, we measured subjects’ ability to compare two
shapes across a variety of 2D transformations, while limiting the
processing time for the first shape. We found that when subjects

Figure 10. Sensitivity (d=) data from Experiment 3. Error bars show 95%
confidence intervals.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1304 BAKER AND KELLMAN



were limited to 30 ms of processing time to encode information
from the first display, performance was at chance level, and
improved monotonically up to 110 ms, after which more process-
ing time produces little or no improvement.

To determine if the time needed to do the task in Experiment 1
corresponded to the time needed to extract local features from a
display, we asked subjects to describe a rigid transformation on a
dot display in Experiment 2. Subjects were shown a display for 30
ms, followed by another display in which the set of dots had been
either rotated or scaled. Subjects were extremely accurate in re-
porting both the kind of transformation and its directionality, tasks
which required information about the positions of dots in the first
display.

In Experiment 3, we tested subjects’ ability to detect changes to
local elements when these changes did and did not produce a
change in the shape. The results indicated little or no ability to
encode local element positions sufficiently to do the task. This
does not mean that durable local encoding of elements is impos-
sible; with practice or in the absence of global shape representa-
tions, it seems likely to be possible. In this experiment, however,
the presence of sameness or difference in abstract shape represen-
tations dominated responses; dot changes were only detected with
nonzero sensitivity when they were accompanied by form changes.

An apparent paradox in thinking about our results relates to
classic ideas from Gestalt psychology and research on Configural
Superiority Effects (CSEs). Gestalt psychologists pointed out phe-
nomena in which wholes seemed to be accessed before parts, and
they often claimed that parts gain their meaning from their relation
to the whole (Koffka, 1935). Research by Pomerantz and col-
leagues on CSEs has shown many examples in which displays are
more quickly distinguished when the difference arises from certain
relations between elements, rather than from physical properties of
elements on their own (Pomerantz & Portillo, 2011; Pomerantz,
Sager, & Stoever, 1977). For example, participants’ response times
are longer when they are asked to determine which of four displays
is different (the “odd-quadrant” paradigm) based on the spatial
position of a single dot in each quadrant than when a reference dot
is added to each quadrant, giving four two-dot configurations, one
of which differs in proximity or orientation from the others (see
Pomerantz & Portillo, 2011, p. 1340). Why is it, then, that we find
physical stimulus features are extracted more quickly than abstract
relations in Experiments 1 and 2?

We posit that there is an initial, transient registration of local
spatial features to which human perceivers do not have conscious
access. Use in perceptual tasks requires encoding into a more
durable store (Sperling, 1960). This early registration is used in the
formation of abstract shape representations but can also be directly
observed when it interacts with motion mechanisms, as in Exper-
iment 2. However, once an abstract representation of shape has
formed, much of the physical information from this earlier repre-
sentation is lost, as was observed in Experiment 3. We believe that
configural superiority effects derive from properties of more du-
rable representations used in perceptual tasks. This view of con-
figural effects is consistent with current understandings of early
cortical processing, in which information comes in through highly
local receptive fields. Initial sensory registration to which percep-
tual processes have access (as in our motion task, or if cued in a
Sperling-type task) rapidly decays if not recoded. Most or all
Gestalt effects happen beyond this early registration and presup-

pose it. Our experiments indicate that abstract shape, which is not
in the stimulus per se, takes a certain amount of time to be
acquired, and that is longer than would be required for initial
sensory registration. CSEs, we believe, are probably effects show-
ing configural priority within more stable representations. What
may be surprising about this interpretation is that perceptual rep-
resentations are abstract encodings synthesized from initial sen-
sory registration, even for something as simple as a single dot. (See
Kellman & Massey, 2013 for similar arguments regarding percep-
tion of apparently simple properties such as edge orientation and
color.) We believe even the CSE tasks that hinge on the positions
of single dots in each quadrant are operating on a postsensory
representation. What is a bit counterintuitive in this explanation is
that, although the odd-quadrant discrimination task in the single-
dot case could in theory be done based on local spatial information
in the initial sensory registration, it is not done that way; rather the
positional information must be gleaned from the more enduring
representation. In the latter, as the Gestaltists emphasized and as
CSEs show, relational properties are of higher priority, whereas
the exact coordinates of a dot are not well represented. As we
know from induced motion studies in the same tradition, a dot in
empty space, stationary in relation to an observer, will nevertheless
appear to move if a surrounding frame moves (Duncker, 1929).
This idea is also consistent with the relatively poor accuracy found
by Pomerantz and Portillo (2011) in single-dot conditions. The
power of the reference dots (in the comparison case of two-dot
configurations) is that, although by themselves they add no real
information, they create configurations that are highly salient and
rapidly accessed in the task.

These interpretations are also consistent with the time courses of
various phenomena. Registration in V1 after the onset of a stim-
ulus takes about 20–60 ms (Maunsell & Gibson, 1992). In the
present experiments, abstract shape seems to be accessible after
about 110 ms. Paradigms differ, making simple comparisons dif-
ficult, but Pomerantz and Portillo (2011) found response times in
odd-quadrant CSE experiments with single dots on the order of
1,400 ms, versus about 1,100 ms for the two-dot patterns. Even if
response initiation and execution components are on the order of
500 ms in this task, this leaves 600 ms or so for perception and
decision.

All of these observations fit with a view that configural effects
probably derive from processing carried out on more stable rep-
resentations that derive from earlier, more transient, sensory ones.
On this view, there is no real paradox when considering together
CSE results and the present results on abstract shape perception.
Although our goal in this article has been to shed light on abstract
shape representations that form even in the absence of continuous
contour information in the stimulus, these ideas are consistent with
a more general point that we tend to underestimate the amount of
abstraction that is intrinsic to ordinary visual perception (cf. Kell-
man & Massey, 2013).

A possible limitation of our study is that all our experiments were
conducted on dots sampled from the contours of amoeba-like shapes.
In these experiments, it was essential that all shapes be unfamiliar to
the viewer and share many of the same local curvature features to
ensure that subjects were encoding a representation of the presented
shape rather than matching it to an existing template of an object’s
shape or encoding only a salient feature of the contour. It is easy to
imagine that other kinds of shapes might be encoded abstractly with
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slightly more or less processing time than was observed in Experi-
ment 1, but we believe in all cases this processing time will be
measurably longer than the time needed to extract local spatial fea-
tures of the elements from which the shape is constituted.

These experiments provide relatively direct evidence that ab-
stract shape representations exist and require meaningful process-
ing time to form. As indicated in the discussion of Experiment 3,
they are inconsistent with proposals that claim that higher level
perception and cognition are based on reactivation of sensory
elements or features. Instead, these results directly implicate ab-
stract representations, which are formed from relations of sensory
elements, but do not correspond to them. In Experiment 3, any
system that actually recorded feature activations and could retain
access to them would have led to perfect performance. Less
complete registration of features would still have produced a
markedly different set of results than what we observed. Our
results provide evidence instead for formation of an abstract shape
representation and discarding of sensory elements used as raw
material in construction of such representations. Such abstraction
is more likely the rule than the exception in ordinary perceptual
processing, even for seemingly simple properties of objects in the
world, such as orientation or color, much less shape (Garrigan &
Kellman, 2008; Kellman & Massey, 2013).

The current results also have implications for understanding the
relations between perception in biological systems and artificial
systems that perform classification tasks. In the past 10 years, deep
learning neural networks, especially convolutional neural networks
(e.g., He et al., 2016; Krizhevsky et al., 2012; Simonyan &
Zisserman, 2014), have achieved previously unattained perfor-
mance on image classification tasks. This remarkable success has
raised questions about whether analogues exist between these
trained deep networks and the visual brain (Güçlü & Gerven, 2015;
Kriegeskorte, 2015; Yamins et al., 2014).

A number of considerations suggest that although the current
generation of artificial systems may perform interesting computations
and have utility for some tasks, they operate profoundly differently
from perception in biological systems. As our results indicate, human
perception of objects relies on processes that abstract shape within
110 ms or so after stimulus presentation. Such shape processing
appears to provide a means of recognizing and classifying objects that
allows abstraction over many other object properties. For example, as
illustrated in the introduction, humans readily recognize a rabbit or
elephant in a glass object, an outline, or a silhouette. Artificial
systems appear to have little or no access to overall shape
information, and they appear to be heavily dependent on local
texture information. We draw this conclusion both from the
nature of the convolution operations that underlie these systems
as well as from studies of their output. In other simulations we
have carried out, preservation of shape information while sub-
stituting different texture (e.g., overlaying a wolf’s fur on a
bear’s silhouette) leads reliably to preferred classification by
texture rather than outline by DCNNs (Baker et al., 2018).
These observations are consistent with other recent results; for
example, certain pixel changes that do not affect human recog-
nition can result in misclassification in DCNNs (Szegedy et al.,
2013; Ullman, Assif, Fetaya, & Harari, 2016). Segmentation
and the encoding of an object’s shape appears to play a much
more critical role in human vision than in DCNNs. The latter
class of systems are of great interest, but it is possible that they

are in principle limited by the absence of abstract shape coding.
Efforts to further understand and model abstract shape percep-
tion and representation in humans may be the key to additional
major advances in artificial perceiving and classifying systems.

Abstract shape representations are real, and they are distinct from
the physical elements composing a contour. The experiments reported
here indicate that such representations take approximately 110 ms to
form. The results also indicate the primacy of abstract representation
in perception; early featural encoding supports development of more
abstract and enduring representations. Shape, and other abstract rela-
tions, allow perceptual systems to capture crucial properties of ob-
jects, spatial arrangements, and events. Initial sensory registration of
local features forms the basis from which abstract representations are
derived, but they may typically have little enduring effect beyond that.
As a consequence, abstract representations may be employed even
when more literal feature records would support better task perfor-
mance. This representational primacy of the abstract probably reflects
the functional importance of the kinds of spatial and temporal struc-
ture that perceptual systems must capture to be most useful in thought
and action.

Context of the Research

This work originates from Nicholas Baker and Philip J. Kellman’s
interests in structure, relations, and abstraction in visual perception.
The findings relate to programmatic efforts in our research to under-
stand the connections between the encoding of local information early
in visual pathways and meaningful perceptual representations of ob-
jects, space and motion that underlie thought, action, and learning.
How these connections operate, sometimes described as the linkage
between subsymbolic and symbolic visual processes, encompasses
some of the most fundamental unsolved problems in the psychology,
cognitive science, and neuroscience of perception. In future work, we
hope to continue recent efforts to understand these phenomena
through experiments and modeling.
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Appendix A

Method for Generating Shape Contour Stimuli

1. Begin by generating a circle with a radius of two de-
grees of visual angle in the center of the screen.

2. Select 12 control points along the circle’s circumfer-
ence. Choose control points that are 30 degrees apart
along the circle, but jittered in either direction (M �
3.832, SD � 0.6509).

3. For each control point, randomly select an amplitude of
displacement from a uniform distribution between 0 and

2.807 degrees of visual angle. Displace control points
by the amplitude.

4. Fit cubic splines between the control points and trans-
form from polar to cartesian coordinates.

5. Sample 25 evenly spaced dots from the new shape
contour, and color each dot black or white with the
constraint that no more than two consecutive dots can
have the same color.

Appendix B

Method for Deforming Shape Contours for the “Different” Shape Condition

1. Begin with the shape contour presented in the first
display.

2. Calculate the length of the shape contour.

3. Pick one of the 12 control points and displace it a
random distance from the center. This distance is sam-
pled from a uniform distribution between 1.289 and
2.740 degrees of visual angle.

4. Pick an adjacent control point and displace it from the
center by a distance such that the difference in total
contour length between the new shape outline and the
original will be minimized.

5. Fit cubic splines between the control points and trans-
form from polar to cartesian coordinates.

6. Sample 25 evenly spaced dots from the new shape
contour, and color each dot black or white with the
constraint that no more than two consecutive dots can
have the same color.
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