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Spatiotemporal boundary formation (SBF) refers to perception of continuous contours, shape, and global
motion from sequential transformations of widely separated surface elements. How such minimal infor-
mation in SBF can produce whole forms and the nature of the computational processes involved remain
mysterious. Formally, it has been shown that orientations and motion directions of local edge fragments
can be recovered from small sets of element changes (Shipley & Kellman, (1997). Vision Research, 37,
1281–1293). Little experimental work has examined SBF in simple situations, however, and no model
has been able to predict human SBF performance. We measured orientation discrimination thresholds
in simple SBF displays for thin, oriented bars as a function of element density, number of element
transformations, and frame duration. Thresholds decreased with increasing density and number of
transformations, and increased with frame duration. An ideal observer model implemented to give
trial-by-trial responses in the same orientation discrimination task exceeded human performance. In a
second group of experiments, we measured human precision in detecting inputs to the model (spatial,
temporal, and angular inter-element separation). A model that modified the ideal observer by added
encoding imprecision for these parameters, directly obtained from Exp. 2, and that included two integra-
tion constraints obtained from previous research, closely fit human SBF data with no additional free
parameters. These results provide the first empirical support for an early stage in shape formation in
SBF based on the recovery of local edge fragments from spatiotemporally sparse element transformation
events.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A primary goal of the visual system is to use information in
reflected light to perceive objects and surfaces. Crucial among
the processes involved is detection of edges and surface bound-
aries, for which there are many cues, including discontinuities in
luminance contrast, color, stereoscopic disparity, and texture.
However, these cues may sometimes be insufficient, when depth
differences are below threshold, in poorly lit environments, or
where only sparse surface elements are visible. In such cases,
surface boundaries can often be revealed by object or observer
motion. Dynamic cues, especially the accretion and deletion of tex-
ture (Gibson et al., 1969), can provide sufficient information for the
segmentation of similarly or sparsely textured surfaces and can
result in the perception of boundaries, surfaces, and global motion
(Kaplan, 1969; Andersen & Cortese, 1989; Gibson et al., 1969;
Yonas, Craton, & Thompson, 1987; Stappers, 1989; Shipley &
Kellman, 1993, 1994).
Although accretion and deletion of texture has been described
primarily as a cue to relative depth (Gibson et al., 1969), it has also
been noted that it produces perception of shape in the absence of
any other cues to shape (Andersen & Cortese, 1989; Gibson et al.,
1969; Shipley & Kellman, 1993, 1994). These latter phenomena
pose a mystery. The perception of continuous illusory contours
(and the shapes they delineate) across empty surface regions
between elements does not obviously follow from the perception
of occlusion of an element.

Shipley and Kellman (1993, 1994) found that gradual occlusion
of elements was not even necessary, as discrete element disappear-
ance also produces perceptions of boundaries and surfaces across
gaps. Further, no form of accretion and deletion of texture ele-
ments, continuous or discrete, is needed. The visual system
appears to use any abrupt change in local elements as inputs to a
process that produces perceived edges, form, and global motion.
Changes in element orientation, shape, color, or position all pro-
duced these effects, and they labeled this more general process
of perception of continuous illusory boundaries and global form
from sequential changes in local surface elements spatiotemporal
boundary formation (SBF).
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How do local element changes produce the continuous bound-
aries seen in SBF? It has been proposed that shape in SBF depends
on two processing stages (Shipley & Kellman, 1994, 1997). First,
information from sets of element changes in small neighborhoods
somehow produce local, oriented edge fragments. Second, these
edge fragments connect to each other across gaps according to
well-known interpolation processes that operate in the perception
of illusory and occluded contours (Fantoni & Gerbino, 2003;
Grossberg & Mingolla, 1985; Kanizsa, 1979; Michotte, Thines, &
Crabbe, 1964; Kellman & Shipley, 1991; Palmer et al., 2006).
Whereas the second stage involves processes that are well-under-
stood, the first stage has remained mysterious. Shipley and
Kellman (1994) showed mathematically that a local orientation
could be derived from three sequential non-collinear element
transformations. Little empirical research, however, has examined
SBF with single edges and relatively few elements. Virtually all pre-
vious studies of SBF have used closed objects with smooth con-
tours as stimuli (although see Barraza & Chen, 2006). Recently,
we demonstrated that individual, oriented, illusory edge fragments
can be recovered from sparse displays (Kellman et al., 2012). These
results support the two-level theory of SBF, specifically in implicat-
ing a process that recovers local oriented edge fragments. These
fragments are likely the basic units from which larger shapes are
constructed in SBF.

Here we sought to develop and test a process model of how
such edges are extracted. We implemented and tested an ideal
observer model of edge extraction in SBF displays, based on the
idea that triplets of sequential element transformations can pro-
vide an estimate of a local, oriented edge fragment. In
Experiment 1, we measured orientation discrimination thresholds
for SBF-defined edges across a variety of display properties. Human
performance was much worse than the ideal observer model.
Unlike the model, human performance may involve noise in regis-
tering relevant inputs as well as limits on information accumula-
tion. In a second experiment, we used separate paradigms to
measure noise in human registration of basic input features, such
as inter-element separation. A model that incorporated simple
information accumulation constraints and the measured spatial
and temporal noise parameters in Experiment 2 was able to accu-
rately predict human performance from Experiment 1 across all
tested display conditions.

1.1. Background: SBF displays and models

In this section, we briefly review SBF phenomena and prior mod-
els. Fig. 1 shows an example of an SBF display. The dotted line
defines the boundary of a virtual object. The elements are always
stationary and the virtual object moves across the display. As the
object moves, elements that fall within the boundary change in
Fig. 1. Depiction of a square ‘‘virtual region’’ moving over a field of circular black element
are in another (black). As the square moves (frames 2 and 3), elements entering and exiti
defined illusory contours.
some property, such as color. The change is discrete, and the per-
cept is of a moving figure with clear boundaries. In unidirectional
transformations, elements initially have one value (e.g., white dots
on a black background) and when they become encompassed
within the virtual region, they change to a different value (e.g.,
white dots turn blue). Upon exiting the region, elements revert to
their original value (e.g., blue dots revert to white). In bidirectional
transformations, elements are randomly assigned one of two values
and switch to the other upon entering or exiting the boundary of
the moving object. For example, with blue and white dots on a black
background, blue dots turn white upon entering the virtual region,
and white dots turn blue. SBF occurs across a wide variety of param-
eters, with the precision of shape perception depending on element
density, luminance differences between elements, the velocity of
the virtual region, and frame duration (Andersen & Cortese, 1989;
Cicerone et al., 1995; Shipley & Kellman, 1994).

In SBF, no single frame has visible edges of a shape. In some uni-
directional transformation displays, there will be a region of ele-
ments having a different feature value from surrounding
elements, but the shape of this region is not well specified. Other
unidirectional transformations, such as local element motion, as
well as all bidirectional transformations, offer no information in
any static frame about shape or about any affected region.
Because elements transform all at once, there is no oriented contour
information as might be given by gradual occlusion of an object or
texture element. Thus, in SBF, local edges are not given by any of the
standard cues for edge perception. Moreover, even for a mechanism
attempting to extract local edge fragments from local changes in
element properties, SBF displays pose a difficult variant of the aper-
ture problem (Adelson & Movshon, 1982; Wallach, 1935), what has
been referred to as the ‘‘point aperture problem’’, in which neither
the orientation nor velocity of an edge are directly given in the stim-
ulus (Prophet, Hoffman, & Cicerone, 2001; Shipley & Kellman, 1994,
1997). In the point aperture problem, there are no oriented edge
fragments given in the stimulus. The visual system must simultane-
ously recover both the orientation and motion of a local edge from
sparse and discrete element transformations.

A solution to the point aperture problem was proposed by
Shipley and Kellman (1994, 1997). Given the positions and times
of occurrence of three, non-collinear element transformations,
the orientation of an edge that caused those transformations can
be computed assuming a constant edge velocity and orientation
(Shipley & Kellman, 1997). An intuition for the proof appears in
Fig. 2. Fig. 2a depicts a sequence of element transformations
(labeled 1, 2, and 3) caused by a moving edge. When two elements
transform (in this case, disappear and reappear) in succession, a
transformation vector, v12, is formed between them. The magni-
tude of the vector is determined by the spatial and temporal sepa-
ration of the transformations. We use the term ‘‘transformation
s. All elements inside the square region are in one state (white) and all those outside
ng the region change states. The resulting percept is of a moving region with crisply



Fig. 2. A sequence of frames in which a moving edge successively transforms three elements (changing from black to white). (a). Three elements disappear, one at a time. v12

and v23 are transformation vectors defined by the spatial and temporal separation between elements. (b). Transformation vectors v12 and v23 can be combined to define the
orientation of the moving edge. Figure from Shipley and Kellman (1997). Spatio-temporal Boundary Formation: the Role of Local Motion Signals in Boundary Perception.
Vision Research, 37 (10), 1281–1293.
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vector’’ instead of motion vector to emphasize that apparent
motion is not seen between individual elements during SBF. The
transformation of a third element defines a second transformation
vector, v23, between the second and third elements. If the tails of
these two transformation vectors are placed on the same point
(Fig. 2b), then the orientation of the vector connecting their heads
(v12–v23) has the orientation of the illusory edge, provided that the
edge was moving at a constant velocity and had a constant orien-
tation between transformation events.

The orientation of the illusory edge, h, is given by the following
equation:

h ¼ tan�1 v23 � sin u23 � v12 � sin u12

v23 � cos u23 � v12 � cos u12

� �
ð1Þ

where uij is the angle formed between a horizontal line passing
through element i and a line connecting element i to element j,
and vij is the magnitude of the transformation vector between the
two elements. vij can be computed from the distance between
two elements (Aij) and the time between the transformations of
those elements (DTij):

v ij ¼
Aij

DTij
ð2Þ

In the classical aperture problem (Adelson & Movshon, 1982;
Nakayama, & Silverman, 1988a, 1998b; Shimojo, Silverman, &
Nakayama, 1989), the orientations of the edges or gratings are
given by contrast information. In SBF, the edge segment itself is
not an input to the computation; it is what is being recovered.
Once edge orientation is recovered, the motion direction of the
edge is itself ambiguous (Shipley & Kellman, 1994). Motion direc-
tion of the recovered edge segment can be solved if several differ-
ently oriented segments along the object boundary are recovered,
as in the classical aperture problem.

The model of edge orientation recovery makes several assump-
tions. First, at least three transformation events are needed.
Orientation is ambiguous for any two events because an infinite
number of combinations of edge orientations and velocities could
produce those two transformations. Second, the three elements
cannot be collinear. Third, orientation and velocity of the moving
edge must be constant between transformation events.

For many of the element transformation types that produce SBF,
any pair of sequential, nearby element changes, if viewed in isola-
tion, would produce perception of apparent motion. A remarkable
property of SBF is that these local, nearest neighbor apparent
motions (c.f. Ullman, 1979) are not what is seen in SBF. Instead lar-
ger moving boundaries and shapes are seen (from appropriate col-
lections of element changes). Thus, it appears that motion-like
signals function as inputs to SBF, but are used in a different way
from what they would signal in isolation. Several findings support
the hypothesis that motion-like signals, or vectors relating pairs of
element transformations serve as the input to an edge extraction
process. For example, SBF can be disrupted by the addition of spu-
rious flickering or moving background elements (Cooke,
Cunningham, & Bülthoff, 2004; Cunningham, Shipley, & Kellman,
1998; Shipley & Kellman, 1997). Contour clarity in SBF also
depends on the relative contrast of elements. When element trans-
formations are isoluminant color changes, illusory contour percep-
tion is greatly reduced (Cicerone et al., 1995; Miyahara & Cicerone,
1997). First-order motion perception is also poor under isolumi-
nance (Cropper, 2005; Cropper & Derrington, 1994; Derrington &
Henning, 1993), suggesting that the similar motion mechanisms
may be affected in SBF as well.

Despite behavioral evidence in support of a basic edge-extrac-
tion process that uses motion-like transformation vectors, no
working model has previously been implemented or tested that
takes an SBF display as input and produces a local edge orientation
as output. Part of the difficulty has been that most SBF displays
have used 2D shapes as virtual objects, the recovery of which
would require not only this first edge extraction stage, but also a
second stage in which those edges are integrated and missing
regions are interpolated. We created a display in which the SBF-de-
fined shape was a single, thin, oriented bar that translated horizon-
tally across the screen. In Experiment 1, subjects performed an
orientation discrimination task with the bar. Because the bar could
be treated as a single edge, the model could be directly applied to
the displays to compute the bar’s orientation. The model’s orienta-
tion discrimination threshold could then be computed from these
estimates and directly compared to human performance.
2. Experiment 1

A virtual bar moved across a field of black, circular elements
(Fig. 3). Whenever the bar passed the midpoint of an element, that
element disappeared (became white) all at once and remained
invisible (white) for two frames, at which point it reappeared.
Human orientation discrimination thresholds were measured as



Fig. 3. Illustration of stimuli used in Experiment 1. An invisible, oriented bar moved laterally across a field of black elements on a white background. Whenever it passed the
midpoint of an element, that element disappeared (became white; indicated by dashed circle in second panel) all at once. The element remained white for two frames and
then reappeared (became black). The perception was of a moving, illusory, white bar.
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a function of several display parameters: element density, number
of element transformations, and frame duration. These manipula-
tions have previously been shown to affect the perception of illu-
sory contours in SBF (Shipley & Kellman, 1994). If the model is
correct, it should accurately predict performance under a variety
of display settings and be affected by the same properties that
affect human performance. The model described in Eq. (1) was
used to predict edge orientation on a trial-by-trial basis in simu-
lated experimental trials. The orientation estimates were then sub-
mitted to the same staircase procedure as human data to
determine the bar’s orientation on subsequent trials and to esti-
mate an orientation discrimination threshold. The model and
human orientation discrimination thresholds were then compared
as a function of the manipulated display properties. We discuss the
properties of the model after presenting the behavioral results.
2.1. Method

2.1.1. Participants
Subjects were 45 students from the University of California, Los

Angeles, split into groups of 15 for each of the three experimental
conditions. Subjects were compensated with course credit for par-
ticipating. All reported having normal or corrected-to-normal
vision. The subjects were naïve to the purposes of the experiment.
All subjects provided informed consent and this work was carried
out in accordance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki).
2.1.2. Design
A between-subjects design was used to test the effects of three

display properties on orientation discrimination of SBF-defined
edges. Displays varied in element density (number of elements
per square region), number of transformation events, or frame
duration. Each group of subjects was exposed to only one display
manipulations. All subjects judged whether an SBF-defined edge
was tilted clockwise or counterclockwise away from vertical.
Orientation sensitivity was measured for six element densities,
six element quantities, and three frame durations.
2.1.3. Apparatus
Stimuli were created and displayed using the MATLAB program-

ming language and the Psychophysics Toolbox (Brainard, 1997;
Pelli, 1997). Stimuli were presented on a Viewsonic G250 CRT
monitor, which was powered by a MacPro 4 with a 2.66 GHz
Quad-Core Intel Xeon processor and an NVidia GeForce GT120
graphics card. The monitor was set to a resolution of 1024 �
768 pixels and a refresh rate of 60 Hz.
2.1.4. Displays
Displays contained black, circular elements with a diameter of

10 pixels (0.25 degrees of visual angle) on a white background.
The elements were placed within a 614.4 pixel by 614.4 pixel
region (15.19� � 15.19�) centered on the computer monitor. The
elements were pseudo-randomly arranged by dividing the display
area into a grid of equally sized regions and placing a single ele-
ment at a random position within each region. This placement
method ensured that there were no large areas in the display that
lacked elements and also prevented their overlap while preserving
a somewhat uniform distribution over the entire display (cf.
Shipley & Kellman, 1993, 1994).

A one-pixel-wide bar was specified that spanned the height of
the display. On each frame, the bar moved laterally 5 pixels
(0.125 deg/frame, 7.5 deg/s). Whenever the bar passed the mid-
point of an element, that element disappeared (became white)
for two frames (33.2 ms) and the bar paused. After two frames,
the element reappeared (became black) and the bar continued
moving. Elements appeared and disappeared discretely without
gradual occlusion. The resulting percept was of a horizontally
translating, illusory bar. Whether the bar started on the left or right
side of the display was randomized across trials. The trial lasted
until the bar reached the opposite end of the screen, so each ele-
ment transformed only one time. A new arrangement of elements
was generated for every trial.

On each trial, the bar was tilted clockwise or counterclockwise
with respect to the vertical. The degree of tilt was set by an adap-
tive staircase procedure (Psi method (Kontsevish & Tyler, 1999)
implemented in the Palamades Toolbox (Prins & Kingdom, 2009))
that was used to find the 75% orientation discrimination threshold.
Whether the bar was rotated clockwise or counterclockwise was
randomized across trials.

We independently manipulated: element density, number of
transformation events, and frame duration. Element density was
varied by drawing 9, 16, 25, 36, 49, or 64 elements in the display
area, corresponding to densities of 0.04, 0.07, 0.11, 0.16, 0.21,
and 0.28 elements per squared degree visual angle. A separate
staircase was used for each density. The six staircases were
interleaved and terminated after 50 trials.

In the event number condition, element density was held
constant at 0.28 elements per squared degree of visual angle (the
highest density in the density condition). Each display contained
64 elements. The trial lasted until the illusory bar came into con-
tact with 9, 16, 25, 36, 49, or 64 elements. Starting horizontal posi-
tion and motion direction of the bar were randomized with the
constraint that there would be enough elements in the direction
of motion that would allow for the required number of element
contacts. As with density, six interleaved staircases were used.
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In the temporal condition, 64 elements were placed with the
highest density used from the density and event conditions.
Frame durations were 16.7, 33.3, or 66.7 ms. Subjects were allowed
to respond at any point during the trial. Three interleaved stair-
cases were used, one for each frame duration. The shortest frame
duration was the same frame duration that was used in the other
conditions. As such, there was one display type that was identical
in across all three conditions (64 elements, 64 events, 16.7 ms
frame duration).

2.1.5. Procedure
Subjects sat in a dark room at a distance of 89.5 cm from the

monitor. The only illumination came from the monitor. Subjects
were instructed that they would be making orientation judgments
about slanted edges and were shown examples of real edges that
were tilted clockwise and counterclockwise, at which point they
began the experiment. Before beginning experimental trials, sub-
jects first performed 10 practice trials at the highest element den-
sity and quantity. After each stimulus presentation, a response
screen appeared asking whether the line was tilted clockwise or
counterclockwise. Subjects made a response by pressing a key on
the keyboard. Feedback was provided after each practice trial.
Once complete, subjects were told that they would receive no fur-
ther feedback. Rest breaks were provided every 100 trials.

2.2. Results and discussion

Orientation discrimination thresholds are shown in Fig. 4 (black
lines). The 75% correct orientation discrimination thresholds were
computed for each subject for each condition and averaged across
subjects. For each condition, data were submitted to a within-sub-
ject, one-way ANOVA to test for the effect of the manipulated display
property. Increasing density decreased thresholds with the highest
threshold of 19.08� for the lowest density and 3.17� for the highest
density (Mauchly’s test: v2(14) = 43.85 p < 0.001, Greenhouse-
Geisser e = 0.37, F(1.86, 26.06) = 87.77, MSE = 16.65, p < 0.001,
g2

p = 0.86). Similarly, increasing the number of element transforma-
tions decreased thresholds (Mauchly’s test: v2(14) = 71.25
p < 0.001, Greenhouse-Geisser e = 0.33, F(1.64, 22.91) = 8.35,
MSE = 19.6, p = 0.003, g2

p = 0.37). Increasing the inter-frame interval
increased thresholds (F(2, 28) = 7.78, MSE = 2.37, p = 0.002,
g2

p = 0.36).
In the element transformation event quantity condition, dis-

plays with only nine element transformations had the highest
thresholds of 7.95�. Displays with 16 or 25 element transforma-
tions had slightly lower thresholds of 4.42� and 3.76� respectively.
Fig. 4. Average orientation discrimination thresholds for three display conditions tested
events, and frame duration in the graphs going from left to right. Human performance da
error of the mean. Note the difference in scale of the y-axis between the first vs. second
Finally, displays with 36 or more element transformations had
similar thresholds: 3.25�, 2.97�, and 3.12� for 36, 49, and 64 trans-
formations respectively. This pattern suggests that orientation dis-
crimination performance reached an asymptote at around 16 or 25
transformations and did not improve with additional transforma-
tions. To confirm this leveling off of performance, thresholds were
compared when looking only at 16–64 events and when looking
only at 25–64 events. When the 9-event condition was excluded,
there was still a marginal effect of the number of events
(Mauchly’s test: v2(9) = 28.73 p < 0.001, Greenhouse-Geisser
e = 0.50, F(2.00,27.97) = 8.35, MSE = 3.91, p = 0.085, g2

p = 0.16).
However, when both the 9- and 16-event conditions were
excluded, there was no significant difference in thresholds for the
remaining event quantities (Mauchly’s test: v2(5) = 15.80
p = 0.008, Greenhouse-Geisser e = 0.57, F(1.70,23.86) = 1.55,
MSE = 2.00, p = 0.233, g2

p = 0.10). Orientation discrimination per-
formance therefore appeared to level off at around 25 events.

For frame duration, average thresholds were similar for the two
fastest durations (3.90� and 3.66� respectively) and worse for the
longer, 66.7 ms frame duration (5.70�). Displays containing 64
events, with the highest density and shortest frame rate appeared
in all three conditions. Thresholds were not significantly different
for these displays across the three conditions (ps > 0.05).

The results concur with previous findings that element density
and frame duration affect shape perception in SBF (Shipley &
Kellman, 1994). The present findings go further in showing that
single edges can be recovered in SBF even when there is no com-
plete 2D shape with varying orientations. An early formal analysis
(Shipley & Kellman, 1994) showed that for a 2D shape, information
along differently oriented parts of the boundary, along with a con-
stant velocity constraint, could allow recovery of orientation in
SBF. The present findings indicate that varying orientations along
a virtual object are not required for SBF to operate. Another inter-
esting finding was that in the event quantity condition, perfor-
mance continued to increase as a function of the number of
events up to approximately 25 events, after which performance
leveled off. This result suggests an important constraint on infor-
mation accumulation in human SBF performance.

2.3. Ideal observer model

The ideal observer model described by Eq. (1) was used to pre-
dict bar orientation on a trial-by-trial basis for each of the condi-
tions in Experiment 1. On each trial, the relative distances (Aij),
angular relationships (uij), and timing (DTij) of element transfor-
mations were recorded for all elements directly from the displays
in Experiment 1. Thresholds are shown as a function of element density, number of
ta are shown in black; ideal observer performance is in blue. Bars indicate standard
and third graphs.
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by simulating the motion of the bar. This resulted in a sequence of
events that corresponded to the bar sequentially interacting with
each element. The sequence of events was divided into groups of
three and edge orientation was computed for each such triplet.
From n elements in a display, n�2 triplets were created. Each tri-
plet yielded an estimate of bar orientation, h. All elements except
for the first and last appeared in multiple triplets. The median of
the orientation estimates in a single trial was used to generate a
‘‘clockwise’’ or ‘‘counterclockwise’’ response. If the median was
90�, one of the two responses was chosen randomly. The responses
were then submitted to the same staircase procedure used by
human subjects. This process was repeated for each experimental
condition and display setting. Importantly, while the model output
was an orientation for a single triplet of elements, the comparison
to human data was at the level of discrimination thresholds.

The model was able to predict edge orientation very accurately,
producing thresholds below one degree for all densities (blue lines,
Fig. 4). However, in examining individual orientation estimates
derived from a triplet, there was some deviation from true orienta-
tion. Average orientation estimate error was 1.85� per triplet.
When the median was taken across all orientation estimates com-
puted from all triplets in a single trial, error was 0.37�, 0.28�, 0.24�,
0.20�, 0.17�, and 0.14� for the six element densities from smallest
to largest respectively. Error was reduced for higher density dis-
plays because there were more triplets that contributed to the final
estimate. The model’s performance may have been imperfect
because the bar advanced in discrete steps of 5 pixels every
16.7 ms (i.e., every frame). This introduced error in the amount
of time between element transformation events, which could only
be in multiples of the frame rate. To test this explanation, a sepa-
rate set of simulations was run for which the velocity of the bar
was used to compute the time when an element should have trans-
formed. Using these ‘‘true’’ times, average orientation estimate
error was less than 0.1� per triplet. The model is therefore able,
in principle, to perfectly determine edge orientation from three
element transformation events. In all subsequent modeling, the
timing correction was not applied because true bar velocity cannot
be known a priori. Even without the correction, however, the mod-
el’s median orientation estimates differed little (less than 0.5�)
from true orientation, and the final model thresholds were well
below those of human observers, even for the highest density.

It is possible that simultaneous element transformation events
could have affected both human and model performance.
Simultaneous events could be used to perform the task perfectly:
because the stimulus was a thin bar, simultaneous events could
only have occurred if the orientation of the edge was the same as
the angle between the event positions. Knowing the angle would
therefore be sufficient to determine whether the edge was oriented
clockwise or counterclockwise. This strategy would be particular to
the displays used in this experiment: if the contour of the virtual
object was curved or composed of more than a single edge, a
straight line connecting the positions of simultaneous events on
different parts of the curve or on different edges would not corre-
spond to the shape’s contour. Nevertheless, if observers discovered
that they could use simultaneous events to do the task, then one
might have expected performance to have been near-perfect, espe-
cially for higher densities which had the highest frequencies of
simultaneous events on a per-trial basis. On average, there were
0.21, 0.74, 1.93, 4.06, 7.56, and 12.73 simultaneous events per trial
for each of the six element densities respectively. However, even at
the highest density, average human thresholds were around 3.5�. If
two simultaneous events over the course of a trial were sufficient
to perform the task, we would have expected better performance.
Furthermore, because the virtual edge spanned the height of the
display, simultaneous events were often far apart. The average dis-
tance between simultaneous events for the highest density was
3.38�. Given that simultaneous events lasted for only 33.2 ms
and that the elements were small, it would have been difficult
for observers to detect them at all.

As a further check, we also performed a control experiment (not
reported here) in which only a single element disappeared on
every frame. Subjects reported seeing an illusory edge and orienta-
tion discrimination thresholds were very similar to those found in
Experiment 1. The model was also able to perfectly predict edge
orientation in these displays. Human and model performance
therefore did not depend on the presence of simultaneous transfor-
mation events.

3. Experiment 2

Experiment 1 indicated that observers very accurately discrim-
inate between edge orientations of illusory edges defined solely by
SBF and that their sensitivity depended on the spatial and temporal
properties of the displays. Human performance, however, was far
worse than an ideal observer model, especially for low density dis-
plays and displays with few transformation events. Constraining
human performance could be spatial and temporal integration lim-
its beyond which events cannot be combined to recover edge ori-
entation. In sparse displays, edges may not be formed because
elements are far apart and the temporal intervals between their
transformations are long. Similar integration limits exist, for exam-
ple, in apparent motion, where the perception of motion between
two alternatively flashing elements is constrained by the inter-ele-
ment distance and the element flash timing (Korte, 1915;
Wertheimer, 1912). Previous work suggests that SBF performance
improves with the number of frames that can be fit into a
165 ms temporal window, with additional frames adding little or
no additional benefit (Shipley & Kellman, 1993), suggesting that
there exists a temporal window within which events can be suc-
cessfully integrated. In the event quantity condition in
Experiment 1, performance improved with increasing number of
events up to 25, beyond which there was no added benefit to sen-
sitivity. This may reflect a constraint on the number of events that
can be usefully integrated within a certain time interval.
Additionally, both Experiment 1 and prior work demonstrate a
gradual reduction in SBF perception as a function of the display’s
spatial and temporal properties, suggesting an effect of noise.

There are several possible sources of noise in these displays.
Accurate recovery of edge orientation requires registration of ele-
ment positions, spatial relations between pairs of element changes
elements and times between element changes. For example, the
ideal observer model showed that even slight deviations from cor-
rect temporal values could cause a 1.8� error in the orientation
estimate.

Experiment 2 was designed to empirically measure sensitivity
to these quantities. We did not use SBF performance in any way
in these measurements, but for comparability, we used SBF-like
displays (fields of randomly arranged elements). Noise measure-
ment of low-level stimulus properties has previously been used
to account for error in visual speed perception (Hürlimann, Kiper,
& Carandini, 2002; Stocker & Simoncellli, 2006) and cue reliability
of spatial and orientation signals in biological motion (Thurman &
Lu, 2014). In SBF, low-level sources of noise would result in mis-es-
timation of edge orientation, resulting in poorer sensitivity. We
wondered whether noise in these input variables might account
for differences between human and model performance.

3.1. Method

3.1.1. Participants
The 4 participants included 3 volunteers from the University of

California, Los Angeles, and one of the authors, GE. All reported
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having normal or corrected-to-normal vision. Two of the subjects
were experienced psychophysical observers. All subjects provided
informed consent and this work was carried out in accordance
with the Code of Ethics of the World Medical Association
(Declaration of Helsinki).

3.1.2. Design
A method of constant stimuli design was used to measure sen-

sitivity to spatial, temporal, and angular separation between pairs
of elements flashed successively. Subjects performed a two-inter-
val forced choice (2IFC) task in which they selected the interval
that contained the flashed pair of elements that were farthest apart
in space (spatial separation task), farthest apart in time (temporal
separation task), or which formed the smallest angle relative to
horizontal (angular separation task). Below, we describe the gen-
eral methods that were common to all three tasks, followed by a
specific description of each task.

3.1.3. Displays
The apparatus was the same as that for Experiment 1. Stimuli

consisted of a background array of 400 randomly placed white, cir-
cular elements (diameter = 0.25�) on a black background and two
pairs of target elements which were identical to the background
elements. All elements appeared within a 13.69� by 13.69� area
centered on the middle of the screen. Each trial was composed of
two intervals. In each interval, one of the pairs of elements was
flashed one at a time. Three properties of the flashed elements
were compared across intervals in three separate experimental
sessions: spatial separation, temporal separation, and angular
separation.

3.1.4. Spatial separation task
The distance between two sequentially flashed elements in a

pair defined a spatial separation. Subjects compared the inter-ele-
ment separations of flashed elements in the two intervals and
selected the interval that contained the pair of flashed elements
that were farthest apart (i.e., defined the largest inter-element dis-
tance). In one of the intervals, the spatial separation between ele-
ments was held constant; this was the reference distance. In the
other – the comparison interval – the separation between elements
varied. The percentage of time that the reference distance was
selected as being longer than the comparison was used to define
a psychometric function.

Seven reference distances were tested: 0.50, 1.0, 1.5, 2.0, 2.5,
3.0, and 3.5 degrees of visual angle. A psychometric function was
measured for each. The comparison distances used were offset
from the reference distance by between �1.24� and 1.24�. Ten
comparison distances in that range were used for each reference
and were selected to cover a range of values along the psychome-
tric function.

Each element flashed (i.e., was invisible) for 50 ms. The second
element in a pair disappeared immediately after the first element
reappeared. Each pair of elements in an interval was centered on
a random position within the display area. The angle formed
between these elements and the horizontal was randomized across
trials, but was the same for both intervals within a single trial.
Whether the reference or comparison appeared first was random-
ized across trials. Trials with each of the seven tested reference val-
ues were intermixed. Each reference-comparison pairing was
tested 20 times. In total, there were 1400 trials.

3.1.5. Temporal separation task
The time between the flashing of one element and the flashing

of the second was used to define a temporal duration. As with spa-
tial separation, one interval contained a reference duration that
was held constant and the second contained a comparison
duration that varied. Subjects selected the interval that contained
the longest temporal separation between element flashes. The per-
centage of trials on which the reference duration was selected as
being longer than the comparison duration was used to define a
psychophysical function. Six reference durations were used: 50,
100, 150, 200, 250, and 300 ms, and a psychometric function was
defined for each. Ten comparison durations were used for each ref-
erence, with offsets in the range of -180 to 180 ms. For this task
only, the monitor refresh rate was set to 100 Hz to allow intervals
to occur in steps of 10 ms.

Elements in a pair were separated by a distance of 3.75� and
appeared in random positions of the display. The angle formed
by the elements and the horizontal was randomized across trials,
but was held constant between intervals in a single trial.
Whether the reference appeared in the first or second interval
was also randomized across trials. Trials from each of the reference
durations were intermixed during the experiment. Each reference-
comparison pairing was tested 20 times, creating a total of 1200
trials.

3.1.6. Angular separation task
The angle formed between two flashed elements in an interval

and the horizontal defined an angular separation. Reference and
comparison angular separations were shown in two intervals,
and subjects selected the interval that contained the angle closest
to horizontal. Five reference angles were used: 15�, 30�, 45�, 60�,
and 75�. Ten comparison angles were used for each reference, with
offsets in the range of �22� to 22�.

As in the temporal separation task, elements within a pair were
3.75� apart and appeared in random positions in the display. The
timing parameters were identical to those used in the spatial sep-
aration task. Whether the angles were positive or negative was
randomized across trials. For example, on one trial the reference
angle might be 30� and the comparison 10� and on another trial
�30� and �10� respectively. In both cases, the comparison angle
should be judged as closer to the horizontal. Whether the reference
appeared in the first or second interval was randomized across tri-
als. Each reference-comparison pairing was tested 20 times for a
total of 1000 trials.

3.2. Procedure

Subjects sat at a distance of 89.5 cm from the monitor and had
their heads stabilized by a chin-rest. Subjects were given verbal
instructions that they would be making discrimination judgments
between the spatial, temporal, or angular distances defined by the
flashing of two dots in a field of dots. A trial began with all ele-
ments, background and target, displayed on the screen for
300 ms. A red outline of a square (7.45� by 7.45�) centered on
the elements of a pair appeared for 300 ms. The square was small
enough to focus attention on a particular part of the display, but
large enough so that both elements making up a pair fit comfort-
ably within it. Because the angle formed by the pair of elements
was unpredictable and because the square disappeared before
the first element of a pair flashed, it could not be used as a cue
or reference to help determine spatial or angular separation. Pilot
work had found that without this attentional cue, observers often
missed the disappearance of one or both elements in a target pair
since they were indistinguishable from background elements and
flash durations were very short. Even with the attentional cue, it
was sometimes difficult to detect element flashes. In order to pre-
vent guessing in such cases, subjects were allowed to press a key to
repeat a trial. The same reference and comparison values were
retested, but a new display was generated with background and
target elements appearing in new positions and with the interval
order randomized.



Table 1
Standard deviation estimates for each subject in the spatial task for each of the seven
reference distances.

Observer 0.5� 1� 1.5� 2� 2.5� 3� 3.5�

GE 0.16 0.18 0.24 0.26 0.44 0.33 0.47
RO 0.27 0.35 0.35 0.32 0.42 0.41 0.79
SC 0.20 0.20 0.19 0.29 0.25 0.37 0.35
YX 0.75 0.54 0.68 0.96 0.88 1.00 1.58

Avg. 0.35 0.32 0.36 0.46 0.50 0.53 0.80

Table 2
Standard deviation estimates for each subject in the temporal task for each of the six
reference temporal durations.

Observer 50 ms 100 ms 150 ms 200 ms 250 ms 300 ms

GE 68.54 133.45 99.80 91.59 107.02 86.23
RO 48.28 27.8014 50.83 51.53 69.63 62.15
SC 116.63 61.89 67.92 72.83 96.19 120.48
YX 182.43 181.26 147.96 192.33 137.94 153.60

Avg. 103.97 101.10 91.63 102.07 102.70 105.61
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The attentional cue remained on the screen for 300 ms and then
disappeared. After a further 300 ms, the first element of the first
element pair disappeared for 50 ms and reappeared. The second
element in the pair then immediately disappeared for 50 ms. In
the temporal separation task, a pause was inserted after the reap-
pearance of the first element and before the disappearance of the
second. This pause defined the temporal interval about which sub-
jects made a judgment. Once the second element reappeared, all
elements remained on the screen for another 300 ms, at which
point the second interval began. A second attentional square was
shown for 300 ms and the second pair of elements flashed one at
a time. After the last target element reappeared, the display
remained on the screen for another 300 ms and was then replaced
by a blank, black screen. White text instructed subjects to make a
response by pressing one of two keys on the keyboard to indicate
whether the first or second interval contained the pair of target
elements that were farthest apart (spatial task), that flashed fur-
thest apart in time (temporal task), or that formed the smallest
angle with the horizontal (angular task). If subjects missed one
or more target element flashes, they were instructed to press a
third key to repeat a trial. Subjects were explicitly instructed not
to repeat trials in which they were unsure of the answer, but
saw all four target element flashes. Subjects were given a break
every 100 trials. An illustration of a trial sequence is shown in
Fig. 5. The spatial, temporal, and angular tasks were run in separate
sessions. Each session lasted approximately one and a half hours.

3.3. Results and discussion

3.3.1. Psychometric function fitting
Each reference and their associated 10 comparison stimuli were

used to define a psychometric function depicting the percentage of
time that the reference interval was perceived to contain the pair of
elements that were farthest apart in space, time, or which formed
the smallest angle with the horizontal as a function of the tested
comparison values for each of the spatial, temporal, and angular
separation tasks respectively. This resulted in seven psychometric
functions per observer for the spatial task, six for the temporal,
and five for the angular – one for each of the reference values used
in each task. Cumulative normal distributions were fit to the data
for each reference and for each subject separately using a non-lin-
ear least squares procedure. The mean and standard deviation of
each function were estimated. The mean of the cumulative normal
corresponds to the 50% threshold of the psychometric function. The
standard deviation is inversely proportional to the slope of the
psychometric function. The standard deviation can therefore be
considered a measure of cue reliability (e.g., Thurman & Lu, 2014),
Fig. 5. An illustration of a trial in Experiment 2. Each row depicts one interval. A r
transformations would occur (first panel). An element within that region would disappea
element would disappear, also within the cued region (fourth panel) and reappear (fift
second row depicts a second pair of flashing elements that represent what might have b
farther apart than in the first, but the angular separation between them and the horizo
so that larger standard deviation values (and correspondingly small
slopes) indicate greater uncertainty.

3.3.2. Fitting results
For all three tasks, although there was some variability in esti-

mated means across subjects, average means were not significantly
different from 0 for any reference value for any task (ps > 0.05). The
standard deviation estimates appear in Tables 1–3 for all subjects
in each of the three tasks. Note that standard deviations should
not be directly compared across tasks since the underlying units
are different for each task (degrees of visual angle, milliseconds,
and degrees).

The standard deviations from each condition were submitted to
a one-way, repeated-measures ANOVA. There was a significant
effect of reference spatial separation (F(6,18) = 5.84, MSE = 0.02,
p = 0.002, g2

p = 0.66) and angular separation (F(4,12) = 4.30,
MSE = 7.47, p = 0.022, g2

p = 0.59), but no effect of reference tempo-
ral separation (F(5,15) = 0.17, MSE = 574, p = 0.97, g2

p = 0.05).
Despite these differences and despite differences in standard devi-
ations across subjects (for example, subject YX’s standard devia-
tion estimates for spatial separation (Table 1) were two to three
times larger than those of the other subjects), as a first step, we
sought to test as simple and general a model as possible by averag-
ing standard deviation estimates across all references and all
egion of the display was cued with a red outline of a square in which element
r (second panel, indicated by dashed boundary) and reappear (third panel). A second
h panel). The two elements define a spatial, angular, and temporal separation. The
een seen in the second interval. In this example, the elements in the second row are
ntal is held constant across the two intervals.



Table 3
Standard deviation estimates for each subject in the angular task for each of the five
reference distances.

Observer 15� 30� 45� 60� 75�

GE 6.96 7.94 12.85 9.27 7.87
RO 7.89 13.51 9.88 14.31 10.23
SC 6.14 6.41 8.17 12.13 6.610
YX 5.45 14.84 20.58 19.33 13.46

Avg. 6.61 10.67 12.87 13.76 9.54
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subjects. The resulting average estimates were 0.47 degrees of
visual angle, 101.18 ms, and 10.69� for spatial, temporal, and angu-
lar separation respectively. Instead of using the data from
Experiment 2 to fit individual performance data, we used the aver-
ages to predict performance from a completely different group of
subjects from Experiment 1.

3.3.3. Model construction and results
The ideal observer model introduced in Experiment 1 was mod-

ified by adding two constraints and three sources of noise. The first
constraint was on the number of integrated elements from which
the final orientation estimate was derived. In the event quantity
condition in Experiment 1, threshold estimates were constant for
25 and more events; we therefore restricted the number of ele-
ments to be integrated to 25. A sequence of 25 consecutive element
transformations was sampled for each trial, and orientation esti-
mates were derived only from triplets within that set of elements.
The second constraint was temporal: Triplets containing inter-
event times greater than 165 ms were excluded from the final
set from which the average orientation was computed. Previous
work found that perception of SBF was greatly reduced beyond this
limit (Shipley & Kellman, 1994).

The average noise parameters estimated in Experiment 2 were
applied by including additive noise to the spatial (A), temporal
(DT), and angular (u) inter-element properties as indicated in Eq.
(1). This produced the following revised equation:

ĥ ¼ tan�1 v̂23 � sin û23 � v̂12 � sin û12

v̂23 � cos û23 � v̂12 � cos û12

� �
ð3Þ

v̂ ij ¼
Âij

DT̂ ij

ð4Þ

The accents above the variables in Eqs. (3) and (4) indicate that
they are estimates. An example for how these estimates were
computed is shown below for the angular property:
Fig. 6. Data from Experiment 1 (black) replotted with model fits (blue) using noise param
Model data reflect the average of 10 simulated experiment runs. Note the difference in
ûij ¼ uij þ Nð0;r2
uÞ ð5Þ

In Eq. (5), the true angular separation was corrupted by a noise
drawn from a normal distribution with a mean of zero and a stan-
dard deviation given by the average standard deviation derived in
Experiment 2 (i.e., the average across all four subjects and refer-
ences). A mean of zero of was used because there was no evidence
for bias in the averaged data from Experiment 2. For spatial and
temporal noise, truncated normal distributions were used to
ensure that the final spatial and temporal estimates were non-
negative.

Each condition in Experiment 1 was simulated ten times. For
each simulation, a staircase procedure was repeated for each stim-
ulus level in each condition. On each trial, the sequence of element
transformations was recorded and divided into triplets. Triplets
that included temporal separations between element transforma-
tions that exceeded 165 ms were excluded. Of the remaining tri-
plets, 23 consecutive triplets were chosen (corresponding to 25
events). (For the number of events condition, if there were fewer
than 23 events, then that smaller number of events was used).
For each triplet, an estimate of the bar’s orientation, ĥ, was com-
puted. Each time the estimate was computed, new noise samples
were drawn for each of the three display parameters as indicated
above. The median of the orientation estimates derived from all tri-
plets was used as the final estimate for one trial. This single esti-
mate was translated to a ‘‘clockwise’’ or ‘‘counter-clockwise’’
response and submitted to the adaptive staircase. The averages
of the threshold estimates from the ten simulations are shown in
Fig. 6. Model results are shown in blue; human performance from
Exp. 1 is shown in black.

Model performance was evaluated by computing the root mean
squared error between the human orientation discrimination
thresholds and the model’s. The model matched human perfor-
mance very well across all conditions: element density
RMSE = 3.42�; number of events RMSE = 0.89�; frame duration
RMSE = 0.83�. It is important to note that the same noise parame-
ters estimated from Experiment 2 were used for simulating model
thresholds for all three conditions and that the model was produc-
ing orientation estimates on a triplet-by-triplet basis, while the
comparison between model and human performance was at the
level of orientation discrimination thresholds.

In addition to this model, we examined several alternatives. In
the spatial separation task in Experiment 2, cue reliability
decreased (standard deviations increased) as a function of refer-
ence distance. That is, estimates of inter-element distance were
more variable for larger separations than for smaller ones. In the
implementation of the model, we chose to ignore this variation
eter estimates from Experiment 2. Error bars indicate ± standard error of the mean.
scale of the y-axis between the first and second and third graphs.
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and used additive noise which added the same amount of noise
irrespective of inter-element separation. However, increasing vari-
ability in distance perception as a function of inter-element sepa-
ration suggests that spatial noise may be multiplicative in nature
rather than additive. A role for multiplicative computations has
previously been suggested for looming signals (Gabbiani et al.,
2002), contrast-gain control (Albrecht & Geisler, 1991; Määttänen
& Koenderink, 1991), and orientation selectivity (Beaudot &
Mullen, 2005). To test whether multiplicative noise might better
capture human performance, the spatial separation data from
Experiment 2 were log-transformed and refit with a cumulative
normal, and the standard deviation for each distance for each sub-
ject was recomputed. The average was again taken across all refer-
ences and subjects, resulting in a new spatial noise parameter of
0.30. The simulations were then repeated for all conditions. The
multiplicative noise model was able to fit the density condition
slightly better than the additive noise model (RMSE = 3.11�), but
was worse for the number of events (RMSE = 1.74�) and frame
duration (RMSE = 2.15�) conditions.

We also looked at two simplified versions of the model that
included only either the additive noise for spatial, temporal,
and angular separation (noise-only model), or the two constraints
on number of integrated events and on the time between ele-
ment transformation events (constraints-only model). The goal
of this comparison was to see whether one or the other set of
parameters could account for the human data on its own.
Model thresholds were computed only for the density condition.
Both the noise-only and constraints-only models produced much
worse fits to the human data with RMSEs of 13.15� and 11.18�
respectively.

It was surprising that a model with a few simple noise param-
eters and constraints was able to simulate human performance so
well despite the fact that the noise parameters were derived from
data averaged across subjects and conditions and despite the fact
that those subjects did not participate in the first experiment. It
is also important to note that this model had no free parameters
because the three noise parameters and two constraints were
determined empirically from separate experiments. This suggests
that the model was successfully capturing a perceptual process.
4. General discussion

The current studies support a model of SBF that extracts local,
oriented edge fragments from small groups of element changes.
We obtained experimental data on SBF for a single edge orientation
under variations of element density, element number, and frame
duration, all of which substantially affected performance in an
objective discrimination task. These experiments, and some prior
work, also suggested two constraints limiting information integra-
tion in SBF. One constraint is that, at least as tested here, SBF per-
formance improved up to about 25 change events and not beyond.
The other, obtained from prior work, is a limitation of integration
to a 165 ms temporal window. Separately, using non-SBF tasks,
we obtained experimental data on the variability of encoding basic
inputs to SBF, specifically element separation, relative angle of
event pairs, and temporal separation of events.

These results were sought in order to understand the processing
underlying SBF, specifically to incorporate in a model realistic esti-
mates of noise in human encoding of the inputs. The model
describes a spatiotemporal edge perception mechanism that uses
relationships of sequential, discrete element changes to establish
a local, oriented edge fragment.

Data from Experiment 1 were compared to an ideal observer
version of the model that samples edge triplets and uses informa-
tion optimally. That model performed the task of Experiment 1 to
near perfection from as little as the theoretical minimum of one
non-collinear triplet of sequential change events. This output well
exceeded human performance. We used the experimental findings
in Experiments 1 and 2 directly, however, to build a more realistic
model. Limiting accumulation of change events to no more than 25
and limiting temporal integration to a 165 ms interval were the
key spatial and temporal constraints implemented in the revised
model. In addition, noise estimates obtained experimentally were
used to create noise distributions for spatial separation, angular
relation, and temporal separation. The revised SBF process model
was configured to sample from displays and noise distributions
and, like human participants, to give trial-by-trial responses. As
with human participants, the trial-by-trial data were inputs to
staircase procedures that determined orientation discrimination
thresholds.

The modeling results showed remarkably good fits to the
human data, with no free parameters. Three very different manip-
ulations – element number, element density, and frame duration –
were all fit closely with the same model parameters. These results
are consistent with the idea that the foundation of SBF is a spa-
tiotemporal edge perception mechanism that works as modeled
here. As noted earlier, for perception of global form in more com-
plex shapes, an additional stage in which local edge fragments
are connected by well-known interpolation processes would pro-
duce the rich shape perception phenomena shown in earlier SBF
research (Erlikhman, Xing, & Kellman, 2014; Shipley & Kellman,
1994).

There are several limitations of the current modeling effort.
First, the model used noise distributions for each of the noise
parameters tested in Experiment 2 that were averaged over sev-
eral participants. We also tested the model by the fit to data aver-
aged over participants in the SBF experiments (Exp.1). It could
have been the case that individual variations were too extreme
to obtain good fits using these simplifications, but the results
suggest otherwise. Second, although we obtained noise distribu-
tions at each value tested in the noise experiments (5 angular
relations, 6 temporal separations, and 7 spatial separations), we
incorporated into the model a single noise distribution for each
of these three noise variables, obtained in each case by taking
the average distribution across the several values tested for each
variable. Looking at the variation across values, this simplification
was most clearly justified for temporal separation, where the sev-
eral values tested yielded highly similar results. It was somewhat
less justified for spatial separation, which gave some indication of
a monotonic increase in variability from the lowest to highest
values testes, and for angular relations, which produced some
evidence for more precise performance at the values nearest 0
(vertical) and 90 degrees (horizontal), and somewhat less precise
performance in between. These simplifications of averaging noise
estimates over participants and fitting group data was used in
order to provide a basic, initial test of the model. The error bars
on the participant data give some indication of the variability
for human participants, and in almost all cases, the model
predictions fall squarely within ± 1 standard error of the mean
for human participants. The averaging over values on the
noise dimensions tested seems unavoidable, as stimuli for actual
SBF displays will include a variety of element change triplets that
vary in spatial separation, temporal separation, and angular
relations.

There may be several limitations to the applicability of the
model. First, the calculations in the model that extract a local edge
orientation estimate from triplets of changes assume that the
velocity and orientation of the virtual edge is constant. We have
recently shown that SBF supports a wide range of transformations
of the virtual object including scaling, rotation, acceleration, and
non-rigid transformation (Erlikhman, Xing, & Kellman, 2014). It is
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not yet clear how these findings relate to the current model. The
recent findings suggest that the local edge extraction stage is fast
and can occur with relatively few element changes. If so, the
current model may indeed work for rigid and non-rigid shape
changes, but there may be predictable ways in which edge and
shape recovery break down when shape, orientation, or scale
changes occur too rapidly. Testing the current model in more com-
plex displays is an important priority for further research. Second,
the current model only gives the orientation for a single edge. In
displays with 2D shapes or curved edges, the model would need
some spatial parameter that limits the integration of element
transformations to small neighborhoods to allow for the extraction
of different edge positions and orientations along different
portions of the contour. To give an extreme example, if the illusory
figure is a circle, then there must be some way of keeping separate
element transformations that occur on opposite sides of the circle.
One possibility is that orientation and velocity are treated as
approximately constant within a small spatiotemporal integration
window. Edge fragments can then be recovered simultaneously
within several such windows around the boundary of the object.
Future work is needed to address these issues in detail.

For a moving object, two frames from a motion sequence are
sufficient to solve an aperture problem that occurs locally for each
contour (e.g., Weiss, Simoncelli, & Adelson, 2002). However, as
usually tested, the contours are given by oriented contrast in static
views; thus, the solution to the aperture problem gives a motion
direction. In SBF, no oriented contrast edge is given in any static
view. This more complicated task of recovering both edge orienta-
tion and local edge motion in SBF has been called the point aperture
problem (Prophet, Hoffman, & Cicerone, 2001).

Although the point aperture problem involves recovery of ori-
entation and motion, whereas the classical aperture problem
involves recovering motion with orientation already given, an
interesting conjecture is that the spatiotemporal edge perception
mechanism at the foundation of SBF relies on the same spatiotem-
poral filters that have been theorized to underlie motion percep-
tion. Motion energy models describe spatiotemporal filters
embodied in basic neural mechanisms which can detect moving,
contrast-defined edges over time (Adelson & Bergen, 1985;
Challinor & Mather, 2010; van Santen & Sperling, 1984). Could
these filters serve as spatiotemporal edge detectors when oriented
edges are not given by contrast (or other static spatial informa-
tion)? An apparent problem with this conjecture is that motion
energy models applied to our displays would predict nearest-
neighbor apparent motion between transforming elements, which
is not what is seen in SBF (Shipley & Kellman, 1994). A modified
version of this conjecture is that a set of large, oriented spatiotem-
poral filters that capture within their receptive fields the transfor-
mations of several elements may be used to determine edge
orientation. Evidence for the existence of such filters have been
found in primates in V1 ( Marcar et al., 2000; Schmid, 2008), V2
(Chen et al., 2014; Lu et al., 2010) and MT (Marcar & Cowey,
1992; Marcar et al., 1995). There are a number of ambiguity prob-
lems that would have to be resolved to explain how responses of
multiple detectors at different orientations and scales converge
on unified edge fragment orientation and local motion, but this is
an interesting possibility, worthy of detailed evaluation. If an
explanation of the first stage of SBF in terms of spatiotemporal
orientation/motion filters is possible, then SBF is not simply an eso-
teric visual illusion, but is at bottom the result of a fundamental
visual process involved in the extraction of edges, motion, and
their interactions. We are currently exploring the possibility of
linking models of SBF to the known properties of oriented motion
energy filters, an enterprise that could be especially fruitful in
elucidating important relations between basic visual filtering and
high-level phenomena of perceptual organization.
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