pashier-44108

bock

‘December 4, 2001 20:20

CHAPTER 7

Perceptual Learning

PHILIP J. KELLMAN

INTRODUCTION AND BACKGROUND

When we think of learning, several prototyp-
ical ideas come to mind: the encoding of an
item in memory, the connecting of one idea to
another, the connecting of aresponse to a stim-
ulus, or the learning of a motor sequence or
procedure. Less commonly considered, both
in ordinary intuition and in research, is per-
ceptual learning. Perceptual learning refers to
experience-induced changes in the way infor-
mation is extracted. A large and growing set
of resedrch results indicates that such changes
are not only possible but pervasive in hu-
man information processing. On a full spec-
trum of tasks, from processing the most ba-
sic sensory discriminations to apprehending
the most complex spatial and temporal pat-
terns and relations, experience improves the
pickup of information, often by orders of mag-
nitude. These impfovements affect almost all
skilled behavior, form important foundations
of higher cognitive processes (such as lan-
guage: see Chap. 11, this volume), interact
with other kinds of learning in important
ways, and furnish one of the most important
components of high-level expertise.

Preparation of this chapter was supported in pan by re-
search grant RO1 EY13518-01 from the National Eye
Insutute and by a grant from the MURI Program at
the Office of Naval Research. The author thanks Randy
Gallistel and John Hummel for helpful discussions.
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Yet perceptual learning is not well under-
stood. What are the mechanisms that enable
information-extraction systems to change
their operation? Is there one basic process
or several in perceptual learning? What are
the conditions that lead to perceptual learn-
ing? How does this kind of learning relate
to plasticity at various levels of the nervous
system?

These questions have cycled in and out of
scientific concern for more than a century.
William James, in his Principles of Psychol-
ogy (1890/1950), noted several examples of
extraordinary perceptual skills and empha-
sized the importance of perceptual learning
for expertise, including achievements that we
often think of as motor skills. A flurry of re-
search in the mid-1960s put perceptual learn-
ing firmly on the scientific map. The field
owes a great debt to the work of Eleanor
Gibson and her collaborators around this time,
culminating in a classic review (E. Gibson,
1969). For about a decade or so afterward, few
papers were published in perceptual learn-
ing with human adults, for reasons that are
obscure. Perhaps the focus in this period on
perceptual development in infancy occupied
many of the relevant investigators. Another
factor may have been de facto boundaries be-

tween different research communities. Per-
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ceptual learning has often been omitted from
or poorly integrated with research on both an-
imal learning and human cognition.
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Beginning in the mid-1980s and still accel-
erating, there has been a new wave of interest
in perceptual learning. Much interest has been
sparked by findings at the lowest sensory lev-
els of sensory systems, that is, improvements
in basic sensory acuities previously assumed
to be relatively fixed. Interest in linking these
changes to phenomena of neural plasticity has
also helped to spotlight, and inform, studies
of perceptual learning.

Definitions of Perceptual Learning

Over the years, the phrase “perceptual learn-
ing” has been used to refer to various ideas.
Some are restrictive in implicating a particu-
lar process or mechanism, or in labeling par-
ticular kinds of experimental effects. For ex-
ample, some have suggested that we consider
as perceptual learning only those effects that
can be shown to be specific w0 low levels of
the sensory nervous system. If subjects’ im-
provements in an orientation discrimination
task proves specific to the trained eve, the
trained retinal position, or the trained orienta-
tion, these characteristics would argue against
explanations in terms of high-level cognitive
strategies. Hence, one can be on safe ground
in calling these “perceptual” changes.

As we will see, research has revealed a va-
riety of effects in éerceptual learning, and the
theoretical situation is still in flux. This situ-
ation suggests that we be more eclectic and
funcuonal regarding definitions. Although it
15 reasonable to seek criteria to distinguish
perceptual learning from other types of learn-
ing. it is premature to limit the domain in ad-
vance of a better understanding of the pro-
cesses involved. The case of specificity in
low-level perceptual learning is instructive,
As we see later, it turns out that the speci-
ficity of learning varies substantially with rel-
atively minor alterations in learning proce-
dures. and apparently low-level effects are
modulated by higher-level factors. It is pos-
sible that rather than engaging wholly differ-

ent processes with minor paradigm changes,
we are discovering characteristics of percep-
tual learning processes that are multilevel and
flexible. In addition, taking a broad view al-
lows us to consider significant improvements
in information extraction that do not involve
the most basic sensory elements. Perception
involves the extraction of structure from the
environment by means of the senses (e.g.,
J. Gibson, 1966, 1979). This structure may be
relational and complex. As with perception,
perceptual learning may involve not merely
low-level sensory coding but also apprehen-
sion of relatively abstract structure, such as
relationships in time and space.

For a broad and functional definition, it is
hard to improve on that given by E. Gibson
(1969, p. 3):

“Perceptual learning then refers to an.in-
crease in the ability to extract information
from the environment, as a result of expe-
rience and practice with stimulation coming
from it.”

As my purpose is not to be vague but in-
clusive, I explore a number of more specific
ideas about perceptual improvement. These
are setout next, and they comprise a tool kit for
interpreting experimental evidence through-
out the chapter. Eventually, these particular
notions about how experience changes infor-
mation extraction will attain sufficient clarity
to help adjudicate questions about different
learning processes and the relation of percep-
tual learning to other forms of learning.

Perceptual Learning and
Perceptual Development

One other definitional matter is worth men-
tioning. Sometimes the phrase “perceptual
learning” is used to refer broadly to the many
and substantial changes in perceptual capac-
ities that occur in infancy. This view was an
especially snug fit to classical empiricist ideas
about the nature of perception. Learning to
construct reality must be high on the agenda
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of a new perceiver, if his or her innate endow-
ment includes only the ability to have sensa-
tions, and meaningful perception of objects
and events must be constructed from com-
bining sensations (Locke, 1857; Titchener,
1896), or sensations and actions (e.g., }"iaget,
1954). In such a scheme, all meaningful per-
ception and most of perceptual development
must be perceptual learning. The reason is
that from this perspective, sometimes termed
enrichment (J. Gibson & Gibson, 1935), the
initial connections between stimulus vari-
ables and perceptual representations of en-
vironmental properties necessarily arise by
learning.

Improved understanding of early human
perception does not sustain the overall view
that initial perceptual competencies are estab-
lished by learning (for a review, see Kellman
& Arterberry, 1998). Muny appear prior to
learning, and many others arrive via matu-
ration after birth. Some experience-induced
attunements and improvements in perception
also occur early in life. For some abilities,
such as pictorial depth perception, matura-
tional and enrichment learning explanations
still compete to explain the original connec-
tions between stimulus variables and mean-
ingful perceptual representations.

Accordingly, in this review, we do not de-
fine perceptual development as synonymous
with perceptual learmning. We are concerned
with learning processes that appear to occur
throughout the life span, including infancy.
Most of what we know about these processes
tc date comes from experiments outside the
infancy period. As we will consider, however,
some experiments with young infants are also
beginning to shed light on the nature of the
learning processes, as well as on their role in
perceptual development.

Discovery and Fluency

Progress in understanding perceptual learning
will come from refining our conceptions of
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particular processes and mechanisms. Many
different ideas have been proposed. These
ideas about how perception improves with
practice fall into two general categories. Some
involve discovery: how perceivers uncover,
select, or amplify the particular information,
features, or relations required for some dis-
crimination or classification. The second cat-
egory of change might be called fluency.
Fluency effects involve changes, not in the
content of information extracted, but in the
ease of extraction. At its extreme, practice
in information pickup has been argued to
lead to automaticity: processing that is fast
and relatively insensitive to attentional load
(Schneider & Shiffrin, 1977).

Although the distinction between discov-
ery and fluency is conceptually clear, some
phenomena may be difficult to classify. First,
discovery and fluency effects often arise to-
gether in learning. Second, the dependent
variables associated with discovery and fiu-
ency are not fixed. Sensitivity (a measure of
detection or discrimination ability in signal
detection theory) would seem the best indi-
cator of discovery of new bases of response,
whereas improvement in speed of processing
tends to indicate fluency. However, this map-
ping can be misleading. Not every paradigm
in which perceivers become faster with prac-
tice implies an improvement in fluency. An
improvement in speed, for example, may re-
flect discovery of a better basis for response.
Likewise, under time constraints, sensitivity
may improve because the same information
can be extracted more quickly.

COMPONENTS OF PERCEPTUAL
LEARNING

In what follows, I explore perceptual learn-
ing in terms of (a) ideas about processes and
mechanisms and (b) illustrations of phenom-
enaat differentlevels of sensation, perception,
and cognition. The strategy will be as follows.
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First, I set out a few ideas about processes
and mechanisms. Later, I examine them in
greater detail in connection with specific ex-
perimental findings. These will be addressed
in a progression from early sensory sensitivi-
ties, inciuding work in several senses, to work
in middle vision (perception of contours, ob-
jects, and surfaces) through higher level vi-
sion. The review is selective; my aim is to
consider a variety of explanatory ideas in per-
ceptual learning in connection with useful ex-
amples from the research literature.

Some Discovery Processes

The most remarkable fact about perceptual
learning 1s that it can lead to new bases of re-
sponse. In an extreme case, an observer may
appear not to encode or register a feature or
relation that after practice becomes the ba-
sis for reliable classification. It is often said
about wine-tasting skill that a novice may
be unable to distinguish two different wines
on any basis. As expertise grows, it may be-
come obvious that one of the two previously
indistinguishable wines is a prized delicacy,
whereas the other is a cheap, barely drinkable
embarrassment. (Suffice it to say, learning to
discern such differences can have expensive
consequences.)

There are several useful ways to think
about the nature of discovery effects. How is
it possible for perceptual systems to discover
previously unnoticed information?

Sensitivity Change versus Noise Reduction

Perhaps the most basic question in this re-
gard 1s whether it is possible to show rigor-
ously that learning truly improves sensitivity.
If perceptual learning improves sensitivity in
detection or discrimination, different kinds of
explanations are required than if it merely
changes response biases or leads to the at-
tachment of a label or response to an already-
encoded attribute. Several investigators have

examined perceptual Jearning to ask this ques-
tion using procedures of signal detection the-
ory. They have sought to learn whether sen-
sitivity changes occur and how these might
be more precisely characterized in terms of
biases, signal enhancement, or noise reduc-
tion (Dosher & Lu, 1999; Gold, Bennett, &
Sekuler, 1999). I examine these approaches
next. The evidence indicates that percep-
tual learning involves true increases in sen-
sitivity. Such findings certainly make per-
ceptual learning worth explaining, but they
do not in and of themselves furnish the
explanations.

Selection and Differentiation

An influential notion of perceptual learning is
E. Gibson’s (1969) notion of perceptual learn-
ing as differentiation learning. Differentiation
involves the selection of relevant features or
relationships in stimulation that are useful in
making particular classifications or discrimi-
nations. Unlike the attaching of significance
10 information (so-called enrichment learn-
ing). the function of differentiation learning
1s to allow selection of relevant information
from among the abundance of available in-
formation, most of which may be irrelevant
to a particular task. Gibson put forth the spe-
cific hypothesis that what is learned in per-
ceptual learning are distinguishing features:
those properties that make the difference in
a particular task in which the observer must
classify a stimulus as being one kind of thing
or another. This notion may be contrasted
with the idea that experience with certain ob-
Jects leads us to form general structural de-
scriptions. In the latter case, learning might
lead to more detailed representations for all
object attributes. On the distinguishing fea-
tures hypothesis, learning will specifically af-
fect key contrasts. Some evidence supports
the idea that we do preferentially extract task-
relevant dimensions of difference (e.g., Pick,
1965).
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The distinguishing features hypothesis can
be applied to learning at different levels of
complexity. In complex classification tasks,
this may involve some kind of search among
complex relationships to find invariant bases
of classification. Basic sensory tasks may in-
clude overlap in the sets of elementary ana-
lyzers activated by two similar stimuli. With
discrimination practice, one relies more heav-
ily on the most relevant analyzers for mak-
ing the discnimination, whereas those that are
activated equally by both categories may be
suppressed.

In recent years it has been suggested that
some aspects of differentiation learning—
selection of relevant inputs and suppression
of irrelevant ones—can be modeled using
neural-style network learning models (Dosher
& Lu, 1999; Goldstone, 1998; Poggio, Fahle,
& Edelman, 1992). The stimulus is encoded
as an input vector, that is, as values along a
number of stimulus dimensions or an array
of analyzers varying, for instance, in terms
of sensitivity to retinal position, orientation,
and spatial frequency. An output layer con-
tains nodes that correspond to the different
response categories for a task. There may be
one or more hidden layers between the input
and output layers. Nodes at one layer are con-
nected to all nodes at the next layer. These
connections pass activation along according
to the weights of their connection (connec-
tion strength) and the activation of the nodes
themselves. At the beginning of learning, all
nodes at one layer arc connected to all nodes
in the succeeding layer with random weights.
Across learning trials, weights change, either
by back-propagation of an error signal (su-
pervised learning) or by unsupervised learn-
ing schemes (e.g., Hebbian learning. in which
weights increase between units activated at
the same time). This kind of model can ap-
ply to selection of relevant analyzers for basic
sensory tasks. It can also encompass some re-
lations among features, most obviously con-
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Jjunctive ones, in networks with hidden units.
Conventional networks may be limited, how-
ever, in dealing with abstract or symbolic
relations (see the section titled “Perceptual
Learning of Abstract Relations™).

Attentional Weighting

A particular hypothesis about improved se-
lectivity in perceptual learning is the no-
tion that selective attention guides the pickup
of relevant information (and possibly sup-
presses irrelevant information). Attention can
be allocated to particular dimensions, such
as color, or to particular features, such as
red. This notion that learning involves a se-
lection of relevant dimensions and. the con-
nection of particular values on dimensions
to behavioral outcomes has a long tradition
in learning research on animals and humans
(Lawrence, 1949; Trabasso & Bower, 1968).
The attentional weighting hypothesis is for-
mally similar to the hypothesis of selection
and suppression of analyzers in sensory dis-
crimination learning. The processes may dif-
fer in the involvement of explicit attentional
or strategic components. Ahissar (1999) sug-
gested that these higher and lower level selec-
tive processes interact to produce perceptual
learning.

Discovery of New Relationships or Features

Some examples of perceptual learning appear
to involve the discovery of features or rela-
tionships that were not initially encoded atall.
To make clear what is intended here, com-
pare two learning situations. First, consider
problems in which learners must figure out
which of two patterns fits in the experimenter-
defined category (or which pattern leads to
a reward in some task). Suppose that the
two choices always have stimuli that are cir-
cles or triangles that are red or black and
large or small. Across trials, the learner can
test hypotheses about what determines the
correct choice. Trabasso and Bower (1968)
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considered problems of this sort in detail, both
in human and animal learning, and found that
performance could be accurately modeled by
learning processes in which trials altered two
parameters: the relevance of a given dimen-
sion (e.g., shape) and the reward value of par-
ticular values on relevant dimensions (e.g.,
red connected to correct choices). Although
learning in such paradigms involves important
issues, the most commonly studied problems
raise only minimally the issues of discovery of
potentially relevant dimensions and features.
The ways in which stimuli differ are salient
and obvious from the start.

For contrast, consider a trainee in art ap-
praisal. When confronted with an authentic
van Gogh painting and a clever forgery, the
trainee may not be able to detect any dif-
ference at all, nor indicate what dimensions
might be relevant. The expert, on the other
hand, may find the differences in brushstrokes
obvious. In this example, the expert's en-
hanced sensitivity arguably involves noticing
details to which the novice is oblivious. Leamn-
ing must somehow allow unnoticed informa-
tion to become salient or at least efficacious
in guiding classification. Discovery of new in-
formation also seems to apply to higher order
patterns and relationships, including abstract
ones. A chess grandmaster, for example, may
notice at a glance that white's position is lost,
due not to an imminent loss of a piece, but to
a structural defect that will take many moves
to prove fatal. The novice may be completely
blind to the structural information enabling
the grandmaster’s diagnosis. Here, the rele-
vant information is relational and abstract, in-
volving relations of shape, color, and spatial
position.

Whether 1t involves fine detail or com-
plex relations, discovery of information to
which the observer has initially zero sensitiv-
ity (in a signal detection sense) is perhaps the
most mysterious aspect of perceptual learn-
ing. For basic features, one possibility (elab-

orated later) is that experience leads to iso-
lating particular sensory analyzers most rel-
evant to a task. Initially, responses may be
heavily influenced by analyzers that are ac-
tivated by stimuli in both of two categories
to be discriminated. These overlapping re-
sponses are weeded out with learning, leav-
ing performance to depend on the analyzers
that disciminate best. For higher level rela-
tional information, a possibility is that new
sorts of information are synthesized by con-
joining features that are initially encoded, a
notion referred to as chunking (e.g., Chase &
Simon, 1973) or unitization (e.g., Goldstone,
1998). A different idea is that expert clas-
sification depends sometimes on discovery
of new, higher order invariants that underlie
some classification (E. Gibson, 1969). Such
invariants may involve relations that go be-
yond mere conjunction of already encoded
information; the relevant relationships may
involve structural relations of many kinds, in-
cluding highly abstract information. Abstract-
ing grammatical relations from speech signals
in language learning is a good, albeit possi-
bly special, example. In language, the realm
of possibly relevant relations may be more
constrained by specialized learning mecha-
nisms than in the general case of perceptual
learning.

How can higher order relations involv-
ing rich structure be discovered in percep-
tual learning? Another parallel to language
may provide a clue. Novel sentences are rou-
tinely produced and comprehended in natural
language use, presumably because they are
synthesized from sets of basic elements and
relations. It is possible that perceptual learn-
ing proceeds from a set of basic encodings
and a set of operators that can connect ba-
sic features and properties to form relation-
ships of higher order. For example, learning
what kinds of things are squares may involve
encoding edge lengths and relations among
edge lengths as registered by equal/different
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operators (Kellman, Burke, & Hummel, 1999).

Our current understanding of such learning
processes is modest. Understanding phenom-

" ena in which perceptual learning appears

to depend on the discovery or synthesis of
new relations is an important challenge for
researchers.

Remapping of Perceptual Dimensions

Another idea about perceptual learning is that
the mapping between different stimulus di-
mensions, or between stimulus dimensions
and perceptual representations, may be shifted
by experience. In this category are experi-
ments using rearranged optical stimulation,
such as the shifting of visual directions later-
ally via prism goggles (Bedford, 1989; Harris,
1965) or, more radically, the inversion of
scenes using inverting prisms (e.g., Kohler,
1964).

The remapping of perceptual dimensions is
an tmportant but special category of percep-
tual learning. Most often, remapping involves
relations between two channels through which
the same environmental propenty is perceived.
For example, it is important that the felt po-
sition and visibie position of one’s arm cor-
respond, because the world contains not a
haptic space and a visual space, but space.
Accordingly, remapping or recalibration oc-
curs for perceptual inputs that are intrinsically
linked in this manner. The obvious function
of remapping is 1o maintain proper coordina-
tion among the senses and between perceptual
and motor activity. One clear application of
remapping processes involves changes that
occur during growth and development. For
example, the radial localization of sounds
depends on time, phase, and intensity differ-
ences given to the two ears. The specific map-
ping between interaural differences and ra-
dial direction depends on the size of the head,
which changes as a child grows. Remapping
processes sensitive to discrepancies across
modalities may serve to maintain sensory and
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motor coordination (Knudsen & Knudsen,
1985). For adults, the need for remapping pro-
cesses is less obvious; nonetheless, the capa-
bility forremapping when adults are subjected
to altered stimulus inputs is dramatic. Perhaps
such phenomena imply some ongoing need
for recalibration, even in adults.

As the focus of this review is primarily on
learning processes that lead to improvements
in the pickup of information, I will not do
Justice to the literature or issues on remap-
ping processes. The section titled “Spatial
Intervals” elaborates one example. For a more
comprehensive discussion of the issues in
remapping, see Bedford (1995).

Fluency Processes

Automaticity

A classic example of improved fluency as a
result of perceptual learning is the work of
Schneider and Shiffrin (1977). In a series of
studies, subjects judged whether certain let-
lers in a target set appeared at the corners of
rectangular arrays. Attentional load was ma-

nipulated by varying the number of items in

the target set and the number of items on each

-card in a senies of frames. Early in learning,

performance was highly load-sensitive, but
with extensive training subjects came to per-
form the task equally well within a range of
target set sizes and array sizes. These results
led Shiffrin and Schneider (1977; Schneider
& Shiffrin, 1977) to claim that a transi-
tion occurred from controlled to automatic
processing.

Item Storage

A wide variety of evidence indicates that ex-
perience with particular items facilitates sub-
sequent performance on those items in clas-
sification tasks. This effect occurs even in
cases in which subjects have extracted a clear
classification rule and in cases in which the
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familiarity is based on aspects that are ir-
relevant (for a review, see Goldstone, 1998).
The effects of instance learning may diminish
over days or weeks in comparison to effects
of learning some rule or invariant (Posnar &
Keele, 1967).

The fluency improvements from item stor-
age appear to lie at the margin of what we

" would label perceptual learning. Such im-

provements have been described as a form of
“imprinting” in which the stored trace may be
functionally described as a new “receptor” or
“detector” (Goldstone, 1997). A reasonable
alternative is that these improvements in flu-
ency derive from the associative connection of
a particular stimulus representation to a par-
ticular categorization response (Hall, 1991).
A useful criterion may be whether the per-
ceptual representation itsclf changes as learn-
ing progresses or whether learning consists of
the connection of a given representation to re-
sponses or other representations (see Chaps. 1
and 2, this volume).

Unitization

In contrast to processes of differentiation that
occur from experience, unitization refers 1o
the combining or connecting of encoded fea-
tures to create chunks or units that make
perceptual classification faster or more ac-
curate. Evidence suggests that stimulus fea-
tures that co-occur tend to become encoded
as units. Such a process has often been in-
voked to account for fluent processing of let-
ters (e.g., LaBerge, 1973) and words (e.g.,
Salasoo, Shiffrin, & Feustel, 1985). Such
chunking processes may also come into play
for spatially separated entities, including sep-
arated line segments {Shiffrin, 1996)and com-
plex spatial configurations in chess (Chase &
Simon, 1973).

Several ideas have been proposed to ac-
count for unitization. One is that items or parts
thatare simultaneously activated in short-term
memory become integrated units in long-term

memory (Shiffrin & Schneider, 1977). Com-
putational models using neural-style units
have also used synchrony of activation as
the basis for chunking (Mozer, 1991). Some
physiological evidence suggests that training
leads to the development of specific neural
responses that depend on configural relations
(Logothetis, Pauls, & Poggio, 1995).

Interaction of Fluency and Discovery
Processes. Fluency and discovery processes
may interact in the development of exper-
tise. Writing in Psychological Review in 1899,
Bryan and Harter proposed that automatiz-
ing the processing of basic information was
a foundation for discovering higher order re-
lationships. These investigators studied learn-
ing in the task of telegraphic receiving. When
the measure of words (in Morse code) re-
ceived per minute was plotted against weeks
of practice, a typical, negatively accelerated
learning curve appeared, reaching asymptote
after some weeks. With continued practice,
however, many subjects produced anew learn-
ing curve, rising from the plateau of the first.
For some subjects, a third learning curve ul-
timately emerged after even more practice.
Each learning curve raised performance to
substantially higher levels than before.

What could account for this remarkable
topography of learning? When Bryan and
Harter asked their subjects to describe their
activity at different points in learning, re-
sponses suggested that the information be-
ing processed differed considerably at differ-
ent stages. Those on the first learning curve
reported that they were concentrating on the
way letters of English mapped onto the dots
and dashes of Morse code. Those on the sec-
ond learning curve reported that dots and
dashes making letters had become automatic
for them; now they were focusing on word
structure. Finally, learners at the highest jevel
reported that common words had become au-
tomatic; they were now focusing on message
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structure. To test these introspective reports,
Bryan and Harter presented learners in the
second phase with sequences of letters that
did not make words. Under these conditions,
performance returned to the asymptotic level
of the first learning curve. When the most
advanced learners were presented with se-
quences of words that did not make messages,
their performance returned 1o the asymptotic
levels of the second learning curve. These re-
sults confirmed the subjects’ self-reports.

Although the robustness of the phenome-
non of three separable learning curves in tele-
graphicreceiving has been questioned (Keller,
1958), Bryan and Harter’s {1899) ideas about
improvement, as well as the tests indicating
use of higher order structure by advanced
learners, remain important. Specifically, they
argued that discovery of structure is a limited-
capacity process. Automatizing the process-
ing of basic structure ai one level frees at-
tentional capacity to discover higher level
structure, which can in turn be automatized,
allowing discovery of even higher level infor-
mation, and so on. This continuing cycle—
discovering and automutizing of higher and
higher levels of structure—may account for
the seemingly magical levels of human ex-
pertise that sometimes arise from years of sus-
tained experiepce, as in chess, mathematics,
music, and science. Bryan and Harter's study
offers one of the most intriguing suggestions
about how discovery and fluency processes in-
teract and complement each other. Their 1897
article ends with a memorable claim: “Auto-
maticity is not genius, but it is the hands and
feet of genius.”

Cortical Plasticity

Underlying changes in discovery and flu-
ency in perceptual learning are changes in
neural circuitry. Although linking particular
changes to particular information-processing
a difficult chalienge

functions remains
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(Buonomano & Merzenich, 1998; Edeline,
1999), much evidence suggests that modifi-
cations of neural circuitry accompany percep-
tual learning. As research progresses, a num-
ber of the discovery and fluency processes
enumerated earlier may turn out to be con-
nected directly to types of neural changes.
Some of these possibilities are considered
later.

Perceptual Learning and Other
Concepts of Learning

What is the relation of perceptual leaming
to other concepts of learning? A compelling
answer probably awaits a more precise un-
derstanding of process and mechanism. One
relationship that is not fully clear is the con-
nection of perceptual learning to the notion
of implicit learning (defined as learning with-
out awareness). Many tasks used to study im-
plicit learning are perceptual learning tasks.
Consistent with implicit learning, in complex
perceptual learning tasks (e.g., sorting of new-
born chicks by sex, chess playing), experts are
often unable to explain what stimulus relation-
ships they are using in classification. Also, in
some kinds of amnesic patients, explicit learn-
ing processes appear to be disrupted, whereas
performance on perceptual and implicit tasks
remains intact. Yetit is not at all clear that per-
ceptual learning and implicit learning are syn-
onymous. Some perceptual learning may in
fact be explicit; in some pattern-classification
learning subjects can indeed point out what
information they are using. Moreover, neu-
ropsychological data may suggest more than
one type of implicit learning.

Many other questions exist regarding the
boundaries and relations between perceptual
learning and other notions of learning. One
issue is whether some aspects of percep-
tua) learning can be understood in terms of
more familiar associative learning concepts
(Hall, 1991). Another is the involvement of



t

pashier-44108

book December 4, 2001 20:20

268 Perceptual Learning

perceptual learning in what are usually re-
garded as motor skills. When a baseball batter
successfully hits a pitch, perceptual learning
may account for the skill that allowed him
to detect early in its flight that the pitch was
a curveball. However, perceptual differentia-
tion of the feel of swinging the bat in various
ways may also have been involved in leamn-
ing the muscle commands that produced the
smooth swing.

Other questions involve not so much bound-
aries between types of learning, but compo-
nents of information processing that are com-
mon to, or analogous among, different forms
of learning. One is automaticity. Some aspects
of information extraction become automatic
with practice, but the same appears to be true
of habitual motor sequences and reasoning
patterns. The notion of automatization seems
to crosscut several forms of learning. Another
family resemblance involves the conditions
for perceptual learning. Perceptual skill seems
unlikely to be subsumed by the dichotomy
of declarative and procedural knowledge, yet
the conditions under which perceptual learn-
ing occurs appear to have much in common
with procedural learning (see the section titled
“Conditons Affecting Perceptual Learning”).

PERCEPTUAL LEARNING IN BASIC
VISUAL DISCRIMINATIONS

Physical devices designed to detect energy or
o make simple pattern discriminations will
have fixed himits of sensitivity. An extraordi-
nary fact about human perceptual leamning is
that many of our most basic sensory thresh-
clds are modifiable by experience. In exam-
ining psychophysical evidence for this claim,
I focus on vision. In recent years studies have
shown that this conclusion is true for dis-
criminations involving virtually all basic di-
mensions of early visual encoding, including,
for example, orientation (Dosher & Lu, 1999;

Shiu & Pashler, 1992; Vogels & Orban, 19853),
motion direction (Ball & Sekuler, 1982) and
sterecacuity (Fendick & Westheimer, 1983).
I sample the literature selectively, highlight-
ing studies that raise interesting issues or point
toward explanatory mechanisms. Much of the
work attempting to connect learning effects to
specific sites of cortical plasticity has involved
senses other than vision; [ explore some of this
work at the end of this section.

Vernier Acuity

Vernier acuity—the ability to detect devia-
tions from collinearity of two lines—is a ba-
sic measure of visual resolution. It is often
labeled as a hyperacuiry; the term refers to
the fact that sensitivity to a particular spatial
difference is smaller than the diameter of indi-
vidual photoreceptors. In Vernier acuity tasks,
thresholds for reliable detection of misalign-
ment may be 10 arc sec of visual angle, about
a third of the diameter of a photoreceptor.
This level of precision is perhaps one
reason that researchers have often considered
basic sensory acuities to be relatively fixed
operating limits. Remarkably, as research has
revealed in recent years, these operating lim-
its can be strikingly improved by training.
Westheimer and McKee (1978) carried out an
early training study using a Vernier task in
foveal vision. After about 2,000 trials, sub-
jects’ thresholds decreased about 40% on av-
erage. These results have been replicated and
extended for both foveal vision (Saarinen &
Levi, 1995) and parafoveal vision (Beard,
Levin, & Reich, 1995). The effects appear to
be resibent; tests carried out 4 months later
showed no decline in the improvement.
Curiously, little improvement was found
in a variant of the Vemier task, the three-
point Vernier task (Bennett & Westheimer,
1991). In the three-point task, two verti-
cally aligned dots are presented, and the sub-
ject must judge whether a third dot midway



pashier-44108

book  December4,2001  20:20

Perceptual Learning in Basic Visual Discriminations 269

between them is displaced to the left or the
right of the imaginary line connecting the
upper and lower dots. Despite practice for
more than 10,000 wials, no reliable threshold
changes were found. The difference in out-
come from the standard Vernier task could be
due to the difference between stimuli. Addi-
tionally, a procedural difference could be rele-
vant. Bennett and Westheimer gave 300 prac-
tice trials prior to measuring learning effects.
Learning could have occurred rapidly dur-
ing these practice trials. Other reports suggest
that Vernier learning occurs rather rapidly,
with most of the effects attained within 300
or so trials (e.g., Fahle, Poggio, & Edelman,
1992). The three-dot resalts are nonetheless
discrepant with the slower course of learn-
ing found by Westheimer and McKee (1978).
Adding to the confusion. Fahle and Edelman
(1993) did find a long-term learning effect for
the three-dot acuity task. It is not clear how to
resolve these discrepancies.

Learning effects on Vernier tasks are highly
specific to the stumulus orientation used in
training (e.g., Fahle et al., 1992). This fact has
motivated explanations emphasizing changes
at relatively early levels of the visual sys-
tem. For example, Fahle et al. proposed that
task-specific modules are set up based on
retinal or early cortical inputs. Specifically,
they suggested that the set of analyzer re-
sponses (photareceptor outputs in their model
but onentation-sensitive cells in a more plau-
sible realization) to an individual stimulus are
stored as a vector. Each such template is con-
nected to aresponse output {*left” or “nght”in
a Vernter task), obtained through supervised
learning. After storage of a number of such
examples, new stimuli can be classified by
comparison to the templates. The templates
are used as radial basis functions in that each
template’s response to the new pattern is deter-
mined by a Gaussian function of its Euclidean
distance from the pattern in the muitidimen-
sional space that encodes the templates. The

responses of the several templates are linked
by weights to the response categories. In the
extreme case in which all stimuli match stored
templates, this model amounts 1o a look-up
table. Models of this type show learning ef-
fects of a magnitude similar to that shown for
human subjects (Fahle et al., 1992). On the
other hand, this kind of model seems an un-
likely account of other features of perceptual
learning in hyperacuity. One is the fact that
learning can occur without explicit feedback
(i.e., without supervised learning). The other
is that radial basis function models predict
specificity in Ie'arning in terms of retinal loca-
tion, eye, and orientation, yet learning effects
transfer at least partially across these dimen-
sions (Fahle, Edelman, & Poggio, 1995).

Findings about specificity have also been
examined in attempts to localize learning ef-
fects anatomically. Because only certain lay-
ers of cortical area V1 and earlier parts of
the visual pathway have significant numbers
of monocularly driven cells (cells sensitive
to inputs from only one eye), one strategy
has been to train in one eye and test in an-
other. For Vernier acuity, results have been
inconsistent (Fahle, 1994, 1995), except for a
fairly clear effect that learning transfers across
eyes when the inputs for both are given to the
same hemiretina (Beard et al., 1995). (The left
hemiretina—right visual field—of each eye
sends its information to the left hemisphere
of the cortex.) This result is consistent with
the idea that leaming effects involve binoc-
ular cells in the trained hemiretina. Results
involving specificity of location within a sin-
gle visual field have been inconsistent (Fahle,
1994, 1995).

Orientation Discrimination

Orientation tuning is a basic feature of early
visual analyzers which first appears at the cor-
tical level. Cells in V1, the earliest cortical vi-
sual area, tend to have small receptive fields
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sensitive to particular retinal locations, with
clear orientation selectivity. Except in the ear-
liest layers of V1, most cells are driven binoc-
ularly. These facts make orientation sensitiv-
ity especially interesting in efforts to conmect
learning effects to particular cortical loci. For
example, a learning effect that was specific to
orientation and to the trained eye would sug-
gest the involvement of monocular V1 cells.

Orientation sensitivity has been shown to
1mprove with practice (Shiu & Pashler, 1992;
Vogels & Orban, 1985). In Shiu and Pashler’s
study, reliable improvement was shown over
nine blocks of 44 als each, all conducted
at specific retinal locations. When lines ap-
peared in new locations (either in the oppo-
site hemifield or in the other quadrant of the
same hemifield), little or no wransfer of iearn-
ing was observed. Learning was also specific
to the onientations used. Such effects are con-
sistent with learning mechanisms that are spe-
cific to particular retinal locations, perhaps
orientation-selective cells in early cortical
areas.

A separate experiment by Shiu and Pushler
(1992) indicated that when subjects judged
brightness differences in the same set of stim-
uli, they did not gain improved discrimina-
tion abilities for orientation. The latter result
suggests the importance of cognitive set, at-
tention, or active task engagement in percep-
tual learning. Such factors, however, would
seem to involve much higher levels of the ner-
vous system. Thus, even perceptual learning
effects involving basic visual dimensions may
depend on an interplay of higher and lower
levels of processing.

Orientation and Visual Search

Studies in which visual search depends on an
onentation difference between a target and
other items in an array also show substantial
practice effects (Ahissar & Hochstein, 1999;
Frorentini & Bemardi, 1980; Karni & Sagi.

1991, 1993). Karni and Sagi (1991, 1993)
tested visual search for a set of three parallel
oblique lines that could be aligned vertically
or horizontally in an array of horizontal lines.
The stimulus onset asynchrony (time between
the display onset and a pattern mask) needed
to achieve a given accuracy (e.g., 80% cor-
rect) decreased rapidly from the beginning of
training. (After 3 sessions of about 1,000 tri-
als each, it had decreased 50% for some sub-
jects.) Improvements continued more slowly
for many sessions afterward.

Some aspects of their data led Karni and
Sagi (1991, 1993) to argue that learning con-
sists of two components. One is a fast com-
ponent that is noticeable within sessions. This
learning fully transfers across eyes. The other
component arises more slowly, appears to re-
quire some period of consolidation or sleep af-
ter learning (as discussed later), and is specific
to the trained eye. Karni and Sagi reported that
both kinds of learning are specific to the stimu-
lus orientations used and the specific quadrant
of the visual field. (Targets always appeared in
the same quadrant during training.) The idea
that different learning processes have both dif-
fering time courses and specificity character-
istics is appealing for distinguishing underly-
ing mechanisms. Unfortunately, it is not clear
how consistently these effects occur. Schoups
and Orban (1996), for example, used the same
task as Karni and Sagi and found that learning
of both types transferred fully across eyes:.

Motion Perception

Discrimination of motion direction improves
substantially with practice. Discriminating
two directions differing by 3 deg is initially
quite difficult but becomes highly accurate
with extended practice. When training in-
volves only a difficult discrimination, the ef-
fects are found to be largely specific to the
training direction (e.g., Ball & Sekuler, 1982).
Such specificity suggests alteration in the
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sensitivity of specific neural channels selec-
tive for that direction.

Results differ, however, if training utilizes
an easier discrimination. Liu (1999) had ob-

servers perform a forced-choice discgimina-

tion between two directions differing by 8 deg.
After training, performance improved at di-
rections that differed by 90 deg from the train-
ing directions. Liu and Weinshall (2000) re-
ported another interesting result. For direction
discriminations involving stimuli 4 deg apart,
there was little transfer when performance
was tested at new orentations (90 deg dif-
ferent). A different measure of transfer, how-
ever, produced some evidence that learning
does generalize. During the second discrimi-
nation task, the learning rate was almost twice
as fast as that in the original task.

These results mandate some caution in in-
ferring the neural locus of learning effects
from specificity of learning effects. If the same
learning processes are at work in the diffi-
cult and easier problems, there may be some
differences in the way they are engaged by
slightly different tasks. If so, varying levels
of specificity may reflect more about the task
than about the mechanism. Alternatively, the
results may indicate different kinds of learn-
ing processes—one involving improved se-
lectivity of particular neural channels and an-
other utilizing higher level processes. These
issues are considered further in the section ti-
tled “Task Difficulty” below.

Specificity in Perceptual Learning

At this point, it is fair to say that attempts to
use anatomical or stimulus specificity to infer
the locus of learning in the nervous system
have not vielded any clear generalizations.
This conclusion comes both from inconsis-
tent results on nearly idenuical tasks and from
differences across tasks. The situation may re-
flect the fact that multiple types of learning
effects (involving multiple loci) are strongly

affected by small task differences. An alter-
native conception is that perceptual learning
ordinarily involves a coordinated interaction
of higher level processes, such as attention,
and lower level ones, such as tuning of recep-
tors sensitive to particular stimulus properties
(e.g., Ahissar & Hochstein, 1999).

Sensitivity versus Noise Reduction
in Perceptual Learning

Applications of concepts of signal detection
theory have led to recent progress in under-
standing perceptual learning. A fundamen-
tal question about changes in detection and
discrimination performance is whether these
effects entail rue improvements in sensitiv-
ity. Sensitivity might increase, for example, if
learning somehow amplifies the relevant in-
ternal signals used in a task. Another possible
account of improved performance is that inter-
nal noise—departures from ideal processing
within the observer—is somehow reduced.
Dosher and Lu (1999) described a framework
for studying these questions, illustrated in
Figure 7.1.

The framework begins with the assump-
tion that processing of a sensory discrimina-
tion may be thought of as assessing a signal’s
match to one or another internal templates.
Matching accuracy may be affected by exter-
nal noise (in the stimulus) or by internal noise.
Internal noise may be of two types: additive
(constant) or multiplicative with the stimulus
(in which the stimulus equals the signal plus
external noise). By testing performance with
different amounts of external noise, different
notions of improvement can be tested. In Fig-
ure 7.1a, the effect of practice is to enhance or
amplify the stimulus; perhaps a better descrip-
tion is that calculation efficiency improves.
Associated with this effect is a characteris-
tic set of curves shown in Figure 7.1b. These
curves show the signal contrast required to
achieve a certain performance threshold. In
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Figure 7.1 Models of learning effects and their data signatures.

NOTE: a) Practice turns up the gain on the stimulus, corresponding to stimulus enhancement. (N, and
N, indicate multipircative and additive noise, respectively; A, indicates multipliers on internal additive
noise, leading to stimulus enhancement.) b) Stimulus enhancement is associated with improvements in
performance in the lower noise limb of the contrast threshold functions. ¢) Practice affects the amount of
exlemal noise processed through the perceptual template by narrowing the filter tuning, corresponding to
external noise exclusion. (A indicates multipliers on the output of the perceptual filter applied to external
noise. corresponding to external noise reduction.) d) External noise exclusion improves performance only
in the high noise limb of the contrast threshold functions. e) Practice reduces the gain on multiplicative
internal noise, or internal multiplicative noise reduction. (A, indicates multipliers on internal multiplica-
tive noise.) f) Internal (multiplicative) noise reduction improves performance somewhat over both limbs
of the contrast threshold functions.

SOURCE: Reprinted from Vision Research. 39, B. A. Dosher and Z.-L. Lu. “Mechanisms of perceptual
learning.” pp. 3197-3221. Copyright © 1999, with permision from Elsevier Science.

the flat part of the curve, changes in exter- the contrast required to attain threshold per-
nal noise have little effect. as performance formance. Practice has the effect of lower-
is limited by internal noise. Beyond a cer- ing contrast thresholds (shifting the perfor-
lain point, increases in external noise increase  mance curve downward) in the lower limb
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of the curve, while not affecting the higher
limb.

Figure 7.1c illustrates the case in which
learning reduces only external noise. (This is
shown in the figure by the increasingly nar-
row tuning of the template.) The effect of
practice on the data is schematized in Fig-
ure 7.1d. There is no change in the required
contrast to attain threshold in the flat part of
the curves. However, the range within which
performance is limited by external noise (the
rising portion of the curve moves rightward
with practice. Finally, the possibility of reduc-
tion of the multiplicative component (gain) of
internal noise is shown in Figure 7.le. Prac-
tice has the effect of improving performance
in both parts of the curves, as shown in Fig-
ure 7.1f.

Dosher and Lu (1999) tested these predic-
tions in a series of experiments in which ob-
servers judged on each trial whether a Gabor
patch embedded in noise tilted to the left or
nght of vertical. A staircase procedure was
used to find a contrast threshold in each con-
dition. To distinguish different mixtures of the
possible kinds of effects, experiments were
carried out in which data were collected at
more than one threshold level. This manipu-
lation provided more detailed information on
shifts in performance curves from practice.

Fitting the model predictions to their sub-
Jjects” data, Dosher and Lu found evidence for
both stimulus enhancement and external noise
exclusion. There was no evidence of an effect
of decreased gain of internal multiplicative
noise. They discussed these effects in terms of
changes with practice in the weights given to
particular analyzers. Among a set of analyzers
that are iniually engaged by a task, some turn
out to be less relevant than others. Learning
1s conceived of as a reduction of the contribu-
tions of less relevant analyzers to decisions.

One limitation in Dosher and Lu’s analy-
sis is the difficulty of distinguishing stimulus
enhancement from reduction of additive inter-

nal noise, as these make similar predictions.
Using similar methods, Gold, Bennett, and
Sekuler (1999) found signal enhancement in
perceptual learning tasks. They tested learn-
ing in a face identification and texture identi-
fication task. Subjects made a 10-alternative,
forced-choice decision about which stimu-
lus was presented on each trial in varying
amounts of external noise. To assess the ef-
fect of internal noise, they used a double-pass
response consistency measure, in which sub-
jects judged a specific set of stimuli twice.
Given that the signal plus external noise com-
binations in the stimulus set were held con-
stant, any inconsistencies in responding must
be due to internal variability. From the ob-
Server’s consistency, it is possible to obtain an
estimate of total internal noise (additive plus
multiplicative). Gold et al.’s results suggested
no change in internal noise.

Although the tasks in these studies have
varied, all have indicated effects of signal
enhancement and perhaps improved external
noise exclusion. Changes in internal noise
have not been found. It is not clear how gen-
eral these findings are across different learn-
Ing tasks.

Cortical Plasticity

The rapidity of perceptual learning in some
studies 15 consistent with some known phe-
nomena of neural changes in the brain. The
activity of single neurons in sensory areas of
the cerebral cortex is often characterized by
their receprive fields—the description of the
range of values on some relevant stimulus di-
mensions that influence the firing rate of the
neuron. The receptive field of a visual neu-
ron, for example, could describe the locations
on the retina that, if stimulated, influence that
cell’s responding.

Visual receptive fields of cortical neurons
can be changed rapidly by creating an artificial
scotoma (blank area) in the cell’s original
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receptive field while stimulation (e.g., mov-
ing gratings or dynamic noise dots) are pre-
sented in the surround. Pettet and Gilbert
(1992) observed large increases in receptive
field sizes within as little as 10 min ofex-
posure to the artificial scotoma. It is not com-
pletely clear that increased receptive field size
is the accurate description of the changes; an
increased responsivity in the entire receptive
field, including previously subthreshold areas,
might explain the data (Das & Gilbert, 1995).
Either kind of change might represent a cor-
tical basis of perceptual learning. Contrary
to behavioral studies of perceptual learning,
however, such receptive field changes appear
to be short-lived. It is possible that the dif-
ference in duration of the receptive field and
perceptual learning effects are due to differ-
ences in training protocols.

A variety of studies have found evidence
consistent with the specific idea of Hebbian
learning mechanisms, in which co-occurring
activations of units result in the strengthening
of their connections. For example, the orien-
tation sensitivity of V1 cells in cats can be ex-
perimentally altered by pairing presentation
of selected orientations at the retina with ap-
plications to single cells of electrical current
(Frégnac, Schulz, Thorpe, & Bienenstock,
I988) or neurotransmitter substances. such
as GABA or glutamate (McLean & Palmer,
1998). Hebbian learning appears to be one
mechanism of change in neural circuitry
that could contribute to perceptual learning
phenomena.

Plasticity in the Somatosensory System

Changes in cortical neurons, and indeed in
whole cortical areas, are also characteristic
of learning in other sensory modalities. For
example, Wang, Merzenich, Sameshima, and
Jenkins (1995) trained owl monkeys on a tac-
tile task in which two bars were attached
across three fingers at either their bases (prox-
imal end) or their tips (distal end). Stimulation

of all three fingers from one bar and the other
generally alternated, and the monkey was re-
quired to respond whenever two consecutive
stumuli were applied through the same bar.
Normally, receptive fields in somatosensory
area 3b are specific to individual digits; mul-
tidigit receptive fields are extremely rare. As
shown in Figure 7.2, after prolonged train-
ing many cells exhibited multidigit receptive
fields. The investigators noted that the devel-
opment of these receptive fields is consistent
with Hebbian learning.

Plasticity in the Auditory System

Whereas the organization of both early vi-
sual and somatosensory cortical areas involve
topological maps of the space on the receptor
surfaces (retina or skin), early auditory areas
are ronotopic, organized in terms of frequency
responses. The receptive field of a neuron in
primary auditory cortex consists of the range
of frequencies that influence its firing. Leam-
ing tasks have been shown to cause changes
in the frequency responses of cells in auditory
cortex of monkeys. Recanzone, Schreiner,
and Merzenich (1993) showed that monkeys
trained on a difficult frequency discrimina-
tion showed improvement over several weeks.
Subsequent mapping of the receptive fields
of cortical cells indicated that areas respond-
ing to frequencies relevant to the task were
substantially enlarged. Weinberger and col-
leagues have found similar evidence of plas-
ticity in guinea pigs and other species using
a classical conditioning paradigm (Edeline
& Weinberger, 1993; Weinberger, Javid, &
Lepan, 1995). In most experiments a particu-

lar frequency was used as a conditioned stim-

ulus (CS) and was paired with an electrical
shock. Responses of cells in primary auditory
cortex and also in the thalamus showed an en-
hancement of responses to the frequency used
as the CS as well as a general alteration of
many receptive fields such that they tended to
become more centered on that frequency.



pashler-44108

book December 4, 2001 20:20

A Cortical Map of Trained B
Digit Surfaces

Perceptual Learning in Middle Vision 275

Receptive Fields in Different
Area 3b Zones

[T Oistal muttiple-digit RFs Proximal multiple-digit RFs

Om 2274

M Oorsum RFs

W%@@

Figure 7.2 Training-dependent cortical map reorganization in primary somatosensory cortex. Map and
receptive fields of the hand and representations of area 3b from the monkey that underwent behavioral
training. Training involved extensive simultaneous stimulation across the proximal and distal portions of
digits D2-D4, (A) The map shows that in contrast to normal maps, there was a significant portion of the
map that exhibited multiple digit receptive fields, which were specific to either the proximal (horizontal
striping) or distal (vertical striping) phalanges. (B) The receptive fields of the map shown in A, sorted
according to the four observed classes; distal multiple-digit, proximal muitiple-digit, dorsum, and single-

digit receptive fields.

SOURCE: Buonomano and Merzenich (1998). Reprinted with permission.

Understanding the relations between par-
ticular kinds of neural plasticity and learning
processes is a gomplicated task that will oc-
cupy researchers for a long time to come. One
reason the task is so complicated is that the
answers depend on other basic, unresolved is-
sues, such as the precise nature of the learn-
ing processes themselves and how these pro-
cesses and the information which they utilize
are represented in the brain. An interesting
discussion of specific issues confronting the
effort to connect plasticity and learning phe-
nomena may be found in Edeline (1999). One
specific issue he raised is that we have as yet
little understanding of how groups of neurons
work together; yet clearly, circuitry encom-
passing more than the coding done by single
cells is of fundamental importance.

PERCEPTUAL LEARNING
IN MIDDLE VISION

Shape: Differentiation

A classic perceptual learning study (J. Gibson
& Gibson, 1955) still serves as a good exam-
ple of the idea of differentiation processes in
perceptual learning. Figure 7.3 shows a coiled
scribble pattern in the center, surrounded by a
number of other patterns that differ along di-
mensions of compression, orientation, or left-
right reversal. These patterns were combined
with 12 others that were quite looked quite
different from these scribbles and also var-
ied greatly among themselves. In the exper-
iments, cards containing individual patterns
were shown. The standard stimulus (center
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) Q

¢ 0 )

Figure 7.3 Scribble stimuli redrawn from

Gibson and Gibson (1955).

NOTE: All patterns other than the one in the center
are derived from the central pattern by compres-
sion. scaling, and/or left-right reversal. Sce text for
additional details.

scribble) was shown for 5 s, and subjects were
told that some items in the other cards to
be presented would match the standard. They
were instructed to make a same/different judg-
ment about whether each card matched the
previously shown standard. The dependent
variable was the number of imes through the
pack of cards required to achieve perfect per-
formance. Gibson and Gibson found that sub-
Jjectstended to say “same” to similar items, but
this tendency decreased across runs. Adults
reached criterion (saying “same” only to the
single matching stimulus) in fewer runs than
did older (8.5- 10 11-year-old) children, who
learned faster than younger (6- to 8-year-old)
children. Learning in this study proceeded
without any explicit feedback. In general, er-
rors involved overinclusion at the start, and ex-
posure to the displays led to differentiation—
the noticing of differences within the set.

Differentiation phenomena have a mysteri-
ous character. If, initially, the perceptual rep-
resentations created by two or more stimuli
are identical, how could they ever come to be
discriminated? Perceptual representations of
particular stimuli must somehow change with
repeated exposure. Such changes may occur
because of sampling or search processes. Of
the many potentially encodable attributes of a
pattern, only some are sampled and encoded in
any one encounter (Trabasso & Bower, 1968).
With repeated exposures, either some prob-
abilistic element in the sampling process or
a systematic search for dimensions of differ-
ence in a given task could lead to discovery of
differences that were not initially noticed.

Whether initial stimulus encodings are fol-
lowed by a search process that leads to differ-
entiation may depend on the task in which the
perceiver is engaged (E. Gibson, 1969). In the
experiment with squiggles, the different pat-
terns may initially have been encoded simi-
larly as line drawings of roughly a certain size
resembling coils of wire. In an experiment in
which subjects were asked to judge members
of this set to be the same or different, differen-
tiation occurred. If the same patterns occurred
incidentally on the sides of cars in a task where
the observer was to classify the manufacturer
of the car, these coils may have remained
undifferentiated. The question of whether per-
formance of an active classification is impor-
tant in engaging perceptual learning mecha-
nisms is discussed in the section titled “Active
Classification, Attention, and Effort.”

Shape: Unitization

The idea of unitization is that practice in a task
allows features that were originally encoded
separately to be combined into a larger unit.
The term is synonymous with some uses of
the term chunking (Chase & Simon, 1973).
Goldstone (2000) reported a series of stud-
ies designed to examine unitization. He used
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Figure 7.4 Stimuli used by Goldstone (2000).
NOTE: Each top contour is composed of five con-
tour segments. See text for additional details.
SOURCE: Goldstone (2000). Copyright © 2000 by
the American Psychological Association. Re-
printed with permission.

stimuli like those shown in Figure 7.4. The

top contours of these stimuli are composed of
five separate shape fragments.

After extensive familiarization with the
category assignments for the stimuli, subjects
were given practice in sorting exemplars into
categories 1 and 2 (shown in Figure 7.4). Re-
action times were measured over four blocks
of 80 tnals. In qne experiment, four conditions
were compared. Categorization was based on
(a) a conjunction of five parts in a particu-
lar order (as in Figure 7.4), (b) a conjunc-
tion of five parts with variable order, (c) a
single component in a constant position, or
(d) a single component in a randomly varying
position. Responses showed that categoriza-

‘tion based on a single component was faster

than for those requiring multiple components.
More important, the most learning was shown
when categorization involved five parts in a
consistent relationship. Goldstone interpreted
the results to indicate that learners are devel-
oping a chunked representation that comes to
function as a unit.
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An important issue in Goldstone’s studies

« of unitization, as in earlier work invoking uni-

tization or chunking effects, is that there are
at least two possible explanations for changes
in performance. One is that a number of pre-
viously separate features come to be aggre-
gated into a unit. The other is that processing
of features gives way to categorization based
on discovery of a higher-order relationship.
The difference in these possibilities is that
the higher-order relation is a new basis for
response, not a collection of the lower level
features. An example of a higher-order rela-
tion can be observed in display VWXYZ in
Figure 7.4.If an imaginary curve connected
the three highest peaks of the contour of
VWXYZ, the curve would be nearly flat, per-
haps slightly concave upward. In the other dis-
plays, such a curve would be convex upward.
Thus, VWXYZ might be efficiently placed
into category | based on this stimulus relation-
ship. The relationship is not definable from
the individual elements or from the mere fact
that they occur together. This example is not
meant to be a specific claim about the informa-
tion that subjects used in Goldstone's studies;
the point is that such higher-order relations
are available. Goldstone explicitly indicated
that his studies are unable to reveal the spe-
cific relations or units that the subjects actu-
ally use. His results appear consistent with
either of these possibilities. One piece of evi-
dence that true unitization is occurring is that
learning effects also occurred in a condition
in which the five contour fragments were sep-
arated and stacked in a vertical arrangement.
The i1ssue of stimulus redescription (discovery
of higher-order relations) persists, however,
as even a stack has invariant relations to be
discovered. If discovery of higher order rela-
tionships is occurring, one might expect it to

-occur more readily for connected segments.

Indeed, Goldstone’s data indicate that learn-
ing was significantly better in the connected
case.
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Spatial Intervals

Perception of spatial extents is an important
part of comprehending any environment. Spa-
tial intervals can be signaled by a variety of in-
formation sources, and it appears that percep-~
tual learning can function to maintain accurate
perception from these sources. An example

.comes from research by Wallach, Moore, and

Davidson (1963). They equipped observers
with a telestereoscope, a viewing device that
effectively changed the interocular distance
(distance between the two eyes). In ordinary
stereoscopic perception, the use of binocular
disparity to specify depth involves a compu-
tation requiring the egocentric distance to at
least one point in the scene. This distance
to a pownt allows disparities to be converted
into perceived depth intervals in the scene.
Changing the interocular distance alters the
magnitude of binocular disparities. When this
occurs, the normal computation of depth inter-
vals from distance and disparity is incorrect.

In the experiment of Wallach, Moore, and
Davidson (1963), the observers viewed a ro-
tating cube through the telestereoscope. Be-
cause all depth intervals were exaggerated, an
edge of the cube thatappeared to have a certain
length when viewed horizontally appeared to
grow In length as it rotated away to become
more oriented in depth. With prolonged view-
ing, however, adaptation occurred, such that
a new relation between disparity and depth
obtained; this relation reestablished accurate
perception of depth intervals. Wallach et al.
argued that the basis of learning or adaptation
in this situation is the assumption of physi-
cal invanance. The system adjusts the rela-
tion between depth and disparity (essentially
learning a new interocular distance) in order
to allow rotating object to have unchanging
shape. A cogent elaboration of this type of
argument, and further examples of this kind
of perceptual recalibration, may be found in
Bedford (1995).

As mentioned earlier, this kind of percep-
tual learning—remapping of the relationships
across information sources—may differ in
kind from most examples of perceptual learn-
ing that we have considered here. In adap-
tation research, including the large literature
on adaptation to distorted optical input due
to prism glasses and other devices, altered in-
puts lead to a new relation between percep-
tual dimensions, or between perceptual and
motoric dimensions. Although involving mul-
tiple processes, a commonality of perceptual
learning cases we have examined is that they
involve improved information extraction with
ordinary (unaltered) stimulation. Both kinds
of learning are important.

Size Perception

Perceptual learning in size perception was
tested by Goldstone (1994). In a pretest, sub-
Jects made forced choice, same/different judg-
ments about the sizes of successively pre-
sented squares. Categorization training was
then carried out in which four different sizes
of squares had to be judged one at a time as
“large” (the two largest squares) or *“‘small”
(the two smallest). After categorization, sub-
jects were given a posttest that was identical
to the pretest. They showed reliably improved
sensitivity to size differences; enhancement
was greatest around the category boundary.
Some evidence suggests that these effects may
be mediated by category labels and that they
may not be truly perceptual effects, as evi-
denced by the lack of positive results when
the same/different tests are carried out with
simultaneously presented displays (Choplin,
Huttenlocher, & Kellman, 2001). The roles
of improved perceptual sensitivity, category
labelling, and their possible interactions de-
serve further investigation, in this and other
contexts.
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Visual Search

As mentioned earlier, some researchers have
argued that perceptual learning involves dis-
covery of distinguishing features (E. Gibson,
1969), that is, those atiributes or cohtrasts
that govern some classification. An impor-
tant question is how the learning of contrasts
relates to the basic encodings that are un-
learned. What kinds of features are naturally
encoded prior to learning, and how can we
tell? Treisman and colleagues (Treisman &
Gelade, 1980; Treisman & Gormican, 1988)
have attempted to characterize the basic in-
puts in vision as functionally separable fea-
ture maps, involving inputs such as orien-
tation, size, color, closure of lines, and so
on. Several criteria have been used to iden-
tify such features, which are said to be auto-
matically encoded. One involves search times
for an item having a certain feature in an ar-
ray of items lacking that feature (distractors).
If search times for a single item having the
feature are insensitive to the number of dis-
tractors, that featural contrast is considered
to be encoded in basic feature maps. Effort-
less segregation of textural regions based on
the featural differences is another criterion.
A third criterion relates to the converse idea:
If information processing based on separately
encoded features is relatively easy, process-
ing of items that proves difficult may indicate
thatcontrasts in single, automatically encoded
features are not sufficient to do that task. One
example involves conjunctions of basic fea-
tures. Connecting information in separate fea-
ture maps to a unitary object is hypothesized
1o require attention. Accordingly, observers
shown brief exposures of object arrays may
experience illusory conjunctions—inaccurate
conjunctions of features. Likewise, search for
anitem in an array whose difference from dis-
tractors is defined by a conjunction of features
1s slow, and it increases with the number of
distractors (Treisman, 1991).
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The idea that perceptual learning involves
discovery or synthesis of new features sug-
gests that this architecture may be modifi-
able. Some evidence indeed shows that the
information-processing criteria used to iden-
tify basic features may be achievable for some
classification tasks with practice. For exam-
ple, Sireteanu and Rettenbach (1995) stud-
ied visual search tasks using feature contrasts
that initially required serial search. These in-
cluded searching for a plain circle among cir-
cles with gaps or with small intersecting line
segments and searching for a pair of parallel
edges among pairs of converging edges. Ini-
tially, performance indicatéd positive slopes
relating reaction times to set size (1, 4, 8,
or 16 items). A subject given extended prac-
tice achieved flat (approximately zero-slope)
functions of set size for all search tasks. Some
subjects who were tested for only a few hun-
dred trials approached similar performance. A
separate experiment showed that learning that
achieved apparently parallel search on one
task transferred fully to another search task
and also transferred from the trained eve to the
untrained eye. The tasks used in the transfer
experiment involved searching for a circle tar-
getagainstdistractors of circles with intersect-
ing line segments and searching for a pair of
parallel lines amid diverging line pairs. Trans-
fer between these search tasks seems unlikely
to depend on use of the same low-level analyz-
ers. Instead, the results suggest that practice
may lead to general search strategies that al-
low new feature contrasts to be processed as
efficiently as those governed by basic feature
maps.

The results of Schneider and Shiffrin
(1977) may be related. Recall thatin a task re-
quiring search for target letters in a sequence
of frames. each containing one or more letters,
they found a transition from controlled 10 au-
tomatic processing, indicated by the fact that
performance became insensitive to attentional
load (number of target items times number of
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search items per frame). Shiffrin and Schnei-
der (1977) interpreted their results in terms of
connecting letter features in the target set to
automatic attention responses.

The meaning of this
improvement—attaching automatic attention
responses to features—depends heavily on
what can be a feature. One diagnostic crite-
rion for identifying basic features, used by
Treisman and others, has been asymmetry of
search performance. Searching for a Q among
Os allows “pop-out,” because the system can
distinguish, in theory, whether the feature
map that registers straight line segments has
some activation or none. Searching for an O
among Qs, however, is slow and serial be-
cause both the feature map for closed loops
and for segments have activation. To find the
odd O requires attentive processes that exam-
ine particular locations, Taken at face value,
the results of Sireteanu and Rettenbach (1995)
appear difficult to fit with this overall scheme
because practice led to parailel search foran O
among what were essentially Qs. In this case,
no feature is attached to an automatic atten-
tion response; rather, the location having the
absence of the feature is what becomes easier
to find. The results are similar to those involv-
ing conjunctive features (see the section titled
“The Word Superiority Effect™) in that they
appear (o require modification of our notions
about basic input features or new ideas about
what is learned with practice.

account * of

Implicit Learning in Visual Search

Earlier | noted that perceptual learning is
sometimes considered to be closely related to
the notion of implicitlearning, that is, learning
without conscious awareness. Implicit learn-
ing is often demonstrated by presenting cer-
tain stimulus regularities in the context of
an irrelevant task and later testing to detect
whether sensitivity to the regularities has been
incidentally acquired (e.g., Reber, 1993). In
recent years research has suggested that in cer-

tain populations of amnesics, explicit learning
processes are impaired while implicit or per-
ceptual learning processes are spared.

However, the precise relation between so-
called implicit learning and perceptual learn-
ing remains unclear. It seems probable that
multiple processes are encompassed by the
conditions to which these terms have been
applied. An example of the difficulty can be
seen in research by Chun and Phelps (1999).
They tested normal subjects and amnesic pa-
tients with hippocampal and surrounding me-
dial temporal lobe system damage on a visual
search task. The main experimental question
involved the use of 12 stimulus arrays that re-
peated on half of the experimental trials. If
subjects were able to encode the specific ar-
rays, then over the 480 experimental trials,
performance in locating the target should have
become faster (because it always appeared in
the same place in each of those 12 arrays).
Results showed that both groups improved in
overall visual search performance. However,
only the normal subjects showed faster perfor-
mance for repeated arrays after practice. Thus,
what the authors call “contextual” learning in
this paradigm appears to be impaired in am-
nesics, who can perform other implicit and
perceptual learning tasks. Such results sup-
port neither a unitary notion of implicit learn-
ing nor anidentification of perceptual learning
with implicit (or explicit) learning.

PERCEPTUAL LEARNING IN
HIGH-LEVEL PERCEPTION
AND VISUAL COGNITION

Although some treatments of perceptual learn-
ing focus on changes in basic sensory func-
tion, even as a matter of definition, some of
the most interesting and exciting phenom-
ena and implications of perceptual learning
involve relatively high-level information and
tasks. These also pose some of the greatest
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challenges for understanding the processes
and mechanisms involved.

Chess

One well studied example is expertise in
chess. In 1997 the best human chess player,
Gary Kasparov, defeated the best chess-
playing computer, Deep Blue, in a 12-game
match. There were some differences in the
way the human and machine played. Deep
Blue searched broadly and deeply through
the space of possible moves and sequences
at a rate of about 125 million moves per sec-
ond. Skilled human players examine a smaller
number of moves: about 4 per turn, with each
followed about 4 plies deep (a ply is a pair of
turns by white and black).

Given this difference in the scope of search,
how could the human match the computer?
The answer lies in human abilities to extract
patterns from the board. These abilities were
studied by DeGroot (1965, 1966), who tested
both chess masters and less skilled players.
Players at different levels differed not in terms
of conceptual knowledge. search heuristics, or
number of possible moves considered. but in
their ability to encode and reconstruct a chess
position after seeing it briefly. Grandmasters
were able to regonstruct nearly perfectly a 25-
piece position with a single 5-s exposure. This
ability decreased substantially for players be-
low the master level. It might be conjectured
thatchess masters and grandmasters happen to
be individuals with exceptional visual memo-
ries, but that turns out not to be the case. When
chess masters and ordinary individuals were
tested for board positions that are not mean-
ingful chess games, they showed equivalent
performance in reconstructing the positions.
It appears that chess masters and average indi-
viduals have about the same short-term mem-
ory capacities (Chase & Simon, 1973).

Chase and Simon (1973) hypothesized that
experience with chess changes perception

such that experts pick up chunks—sets of
pieces in particular relations to each other.
Following de Groot’s work, they used a
method in which subjects reconstructed
viewed chess positions. Masters’ overall per-
formance (pieces reconstructed per view,
number of views needed to reconstruct the
whole position) was better than the overall
performance of A-level chess players, which
in turn exceeded that of beginners. Chase and
Simon also measured the latencies with which
subjects placed the pieces. Their data indi-
cated that several related pieces—chunks—
were placed in quick succession, followed by
a pause and another set of related pieces, and
so on. Masters had larger chunks than middle-
level or novice players.

Chase and Simon concluded that most of
the differences in chess skill related to changes
in the way information is picked up that have
occurred through practice. Their description
involves both the concepts of discovery and
fluency that we described earlier and is worth
quoung:

One key to understanding chess mastery, then,
seems to lie in immediate perceptual process-
ing, for it is here that the game is structured,
and it is here in the static analysis that the good
moves are generated for subsequent process-
ing. What was once accomplished by slow, con-
scious deductive reasoning is now arrived at by
fast, unconscious perceptual processing. It is
no mistake of language for the chess master to
say that he “'sees” the right move; and it is for
good reason that students of complex problem
solving are interested in perceptual processes.
(1973)

Similar comments may apply to almost any
domain in which humans attain high levels
of expertise. I use chess as an example partly
because the value of perceptual learning can
be quantified. Subsequent to his 1997 victory,
Kasparov lost a close match with an improved
Deep Blue that examined over 200 million
moves per second. We can estimate that this
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human’s ability to extract important pattern
structure in chess is worth upwards of 125
million moves per second in raw search—an
awesome equivalent computing power.

The Word Superiority Effect

Master-level chess skill is the province of
very few; highlighting it as an example of
complex perceptual learning may make such
learning appear to be exotic and remote from
ordinary cognition. The impression would
be misleading. As an illustration, consider a
phenomenon shown by almost every skilled
reader of English: the word superiority effect.

Late in the 1960s, researchers discovered
a remarkable fact. Exposure time required to
identify which of two letters was presented
on a trial was lower if the letter appeared in
the context of a word than if the letter ap-
peared alone (Reicher, 1969; Wheeler, 1970;
see Baron, 1975, for a thorough review). In
other words, subjects could more easily distin-
guish between WORK and WORD than they
could judge whether a K or 2 D had been
presented on a given trial. Detailed studies
of the word supenority effect have revealed
several other intriguing aspects. For one, the
effect is not explained merely by rapid pro-
cessing of familiar words as units. In fact,
a substantial effect occurs for pronounceable
nonsense (E. Gibson, J. Gibson, Pick. Osser,
& Hammond, 1962). Baron and Thurston
(1973), among others, found that pronounce-
able nonsense produced effects of the same
magnitude as did actual words. These results
indicate that general knowledge of some sort,
perhaps the spelling or pronunciation patterns
of English, facilitates letter recognition. One
might predict that this kind of fluent process-
ing of word-like strings would emerge from
practice and skill atreading, and the prediction
would be correct (Baron, 1978).

What kinds of mechanisms can explain the
word superiority effect? Several detailed pos-

sibilities remain open (Baron, 1978; Noice &
Hock, 1987). The effect may involve aspects
of both discovery and fluency. Experience
with English orthography seems to lead to
detection of useful structures involving more
than single letters. With practice these come
to be rapidly extracted, so much so that the
path from these higher structures to a deci-
sion about the presence of a particular letter
ends up being faster than the time needed to
detect the letter alone. The fact that the ef-
fect occurs for novel strings, not just for re-
curring words, suggests that the discovery of
relations among letters generally characteris-
tic of English spelling or pronunciation is in-
volved. The fact that such units come to be
processed rapidly and automatically provides
a clue to the mechanisms of fluent reading.
More specific understanding of what the rel-
evant structures are and how they are learned
remains to be discovered.

Unitization in Auditory and
Speech Perception

Although this review has focused primarily
on vision, processes of perceptual learning
characterize information extraction in other
sensory modalities as well. One conspicuous
example, with some parallels to the word su-
periority effect in vision, is the learning of
relationships in spoken words. Learning to
segment the speech stream into words is a
conceptually difficult problem, yet doing so is
crucial for language learning (see Chap. 11,
this volume). Saffran, Aslin, and Newport
(1996) found evidence that learning can oc-
cur, even in 8-month-old infants, based on sta-
tistical relations among syllables. They used
nonsense words comprised of three syllables
and presented them in unbroken, monotone
streams of 270 syllables per minute. Transi-
tional probabilities between syllables X and
Y (transitional probability = frequency of
XY/frequency of X) were manipulated so
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that these were always high within words
(p=1.0for syllables 1-2 and 2-3) and lower
across “word” boundaries { p = .33). After fa-
miliarization for 2 min, infants were tested
with sequences that either preserved words
intact or changed the sequences of syllables.
The showed a novelty response (longer at-
tention) to the novel sequences. Follow-up
studies (Aslin, Saffran, & Newport, 1998)
showed that learning effects depend specif-
ically on transition probabilities as opposed
to more general frequency of exposure
effects.

These findings provide dramatic evidence
that forming of units based on statistical re-
lations of sequential units is an early capac-
ity of human learners, one that works in re-
markably short periods of exposure. Is this
capacity for early statistical learning specific
tolanguage learning? Saffran, Johnson, Aslin,
and Newport (1999) explored this question by
testing learning of statistical dependencies in
tone sequences. Learning effects were simi-
lar, suggesting that these learning capacities
may serve language acquisition but may also
operate more generally.

Feature Conjunctions

A basic question in high-level perceptual
learning is how new bases of response may
be discovered. One natural source of such in-
formation is to make new combinations out
of stimulus features that can already be en-
coded. Implicit in this idea is that perceptual
learning may be something like a grammar—
an open-ended class of new relations can be
synthesized from a finite set of basic encod-
ings and some means for combining these.
Pursuing this general approach requires in-
vestigating both the vocabulary of basic en-
codings and the ways in which information
can be combined.

Earlier [ described some efforts to charac-
terize features that are automatically encoded

in vision (e.g., Treisman & Gelade, 1980).
Feature contrasts that are basic (automatically
encoded) may be the ones that allow efficient
(e.g., load-insensitive or parallel processing)
performance on certain kinds of tasks, such
as visual search. Conversely, information that
is not basic may require selective attention
or serial processing. One prediction from this
perspective is that search for conjunctions of
features must utilize attention and must be se-
quential (across items) in nature. Numerous
experimental tests have supported this con-
Jecture. For example, Treisman and Gelade
(1980) found that extensive experience did not
reduce set size effects when subjects searched
for a blue O among blue T's and red Os.

Yet the relatively fixed architecture that al-
lows us to discover basic features (i.e., ease
of processing features and difficulty with con-
junctions) seems intuitively to be at variance
with phenomena of perceptual learning and
proficient performance. Various examples of
expertise seem consistent with the idea that
perceptual learning can lead to efficient pro-
cessing of feature conjunctions. In chess, for
example, knowing whether one piece is at-
tacking another requires conjoining positions
on the board, color, and shape. It is hard to
imagine how grandmasters grasp whole board
positions from a 2-s glance without being able
to extract feature conjunctions efficiently, if
not automatically.

The suspicion that feature conjunctions are
learnable under some conditions is borne out
by a small amount of experimental evidence.
Shiffrin and Lightfoot (cited in Shiffrin, 1996)
tested visual search for target patterns defined
by conjunctions of spatially separated line
segments and found that search slopes (av-
erage response time per element in the search
arrays) decreased substantially with practice.
Wang, Cavanagh, and Green (1994) found
popout effects with the characters N or Z,
shown in an array of backward Ns or Zs. The
target was rapidly detected with little effect
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of the array size (number of distractors). The
converse search task—searching for a back-
ward N or Z in an array of Ns or Zs showed
clear increases in response time with number
of distractors. [t appears that distractors’can
be rejected in parallel when these are highly
familiar characters. The asymmetry in search
performance suggests that the conjunctions
of the several edges in the familiar charac-
ters have become encoded as unitary features
(at least for purposes of rapid rejection in
search).

Artificial Grammar Learning

Reber developed an important paradigm for.

testing the learning of structure: artificial
grammars (Reber, 1967; for a review, see
Reber, 1993). In his paradigm, letter strings
were generated based on a grammar expressed
as a transition network: Possible elements
of the grammar (letters) were connected by
directional paths, constraining the ways in
which strings could be constructed. Although
letter strings not permitted could look quite
similar to those generated by a given gram-
mar, evidence indicates that humans can, un-
der certain conditions, leamn the structural
relations of the grammar allowing them 1o
classify new strings correctly. Two issues
that have been contested by researchers are
whether the learning really consists of ab-
stracting structure, as opposed to classifying
new instances based on analogies to stored in-
stances, and whether learning is implicit (i.e.,
without awareness). It appears that the learn-
ing can indeed consist of abstracting structure;
1t can also be based on analogies with stored
instances, depending on the learning condi-
tions (Reber & Allen, 1978). Evidence also
clearly supports the idea that learning can be
implicit. Structure can be detected from expo-
sure to sumuli from a given generating gram-
mar even when the structural relations are not
directly relevant to an assigned task.

Implicit learning of artificial grammars is
hardly ever discussed as an example of per-
ceptual learning. Perhaps perceptual learning
is too often interpreted as sensory learning
(e.g.. dealing with elementary sensory dimen-
sions such as color) as opposed to the learn-
ing of structure in the input. Perhaps, because
of their connection to linguistic material, ar-
tificial grammars may be thought of as too
symbolic-or abstract for perceptual learning.
(For a discussion of these issues in the con-
text of language acquisition, see Chap. 11, this
volume). Recalling our earlier discussion of
definitions, 1t is plausible to consider learn-
ing perceptual if it makes use of information
in the stimulus. Structural relations in letter
strings are fair game; if the learning arrives at
an economical description (a grammar, for in-
stance), that result might be better interpreted
as indicating the nature of perceptual learning
rather than indicating that the task is nonper-
ceptual. Of course, some symbolic learning
cannot be perceptual if the relevant informa-
tion 1s not available in the stimulus. For exam-
ple, in trigonometry one can learn from look-
ing at graphs what a cosine function looks
like, but one could not learn from looking that
the function is ordinarily defined by a con-
struction involving a triangle. In work with
artificial grammars, there does not seem to be
an extrastimulus component of this sort (i.e.,
the bases for learning are relations available
in the stimuli). In a similar manner, although
words have a primarily symbolic function, the
fact that pronounceable nonsense strings show
the “word” superiority effect implicates pro-
cesses that pick up on stimulus relationships
apart from the symbolic meaning in these
kinds of representations. Integrating findings
from implicit learning tasks used by cogni-
tive psychologists with those in more com-
monly designated perceptual leamning tasks
may reveal commonalities and insights for
modeling of processes that extract stimulus
structure.
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Object Recognition

Some evidence suggests that learning pro-
cesses may specially engage object-specific
representations. Furmanski and Engel (2000)
measured exposure durations requiréd for
subjects to name low-contrast, gray-scale im-
ages of 60 common objects. Exposure du-
rations needed to obtain 63% accuracy de-
creased 20% to 25% across five days of
training. Transfer tests with a new object set
showed partial transfer, indicating that effects
involved both some generalizable learning
and some specific component. A follow-up
experiment indicated that learning for trained
objects was fully maintained when half of
them were mixed with an equal number of
new object displays. Moreover, changes in
size did not disrupt learning effects. These
results differ from what would be predicted
if subjects had learned primarily distinguish-
ing features within the training set. The rea-
son is that relevant contrasts for distinguish-
ing objects should vary for different object
sets. Results of this type suggest that per-
ceptual learning may involve specific ob-
Ject descriptions as well as distinguishing
features.

Perceptual Learning of Abstract Relations

An important characteristic -of human per-
ceptual learning is that it can involve ab-
stract relations. Such an idea is consistent
with theories of perception that emphasize ab-
stract or higher order relationships (J. Gibson,
1979; Koffka, 1935} and the idea that percep-
tion produces abstract descriptions of reality
(Marr, 1982), that is, descriptions of physical
objects, shapes, spatial relations, and events,
rather than, for instance, records of visual sen-
sations. The idea that perceptual learning in-
volves abstract relations is thus connected 1o
the idea that perception itself involves abstract
information and output.

What does it mean for perceptual learning
to be abstract? It may help to provide a work-
ing definition, or at least a clear example, of
what is abstract. Abstract information is in-
formation that necessarily involves relations
among certain inputs, rather than collections
of the inputs themselves. These ideas were
central in Gestalt psychology (e.g., Koffka,
1935; Wertheimer, 1923). Their example of
a melody serves as well today. Suppose you
hear a melody and learn to recognize it. What
is it that you have learned? At a concrete sen-
sory level, the melody consists of a sequence
of certain particular frequencies of sound. For
most human listeners, however, learning the
melody will not involve retaining the particu-
lar frequencies (or more properly, the sensed
pitches corresponding to those frequencies). If
you hear the same melody a day later, this time
transposed into a different key, you will rec-
ognize it as the same melody. Your encoding
of the melody involves relations among the
pitches, not the particular pitches themselves.
We often hear this fact mentioned in a dis-
paraging light, namely, that few humans have
“perfect pitch” In fact, the example makes
a marvelous point about ordinary perceptual
learning. The extraction and encoding of re-
lations in the stimulus is fundamental. (Of
course, musicians with perfect pitch are still
better.off in that they undoubtedly encode re-
lations as well as particular pitches.)

The Gestalt psychologists argued that this
response to patterns, rather than to concrete
sensory elements, is pervasive in perception.
In attaining the most important and behav-
iorally relevant descriptions of our environ-
ment, encoding relations is more crucial than
is encoding sensory particulars (J. Gibson,
1979; Koffka, 1935; von Hornbostel, 1927).
Whether this holds true depends on the task
and environment, of course.

That encoding of abstract relations is a ba-
sic characteristic of human perceptual jearn-
ing is suggested by recent research with
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human infants. Marcus, Vijayan, Bandi Rao,
and Vishton (1999) familiarized 7-month-old
infants with syllable sequences in which the
first and last elements matched, such as “li na
Ii” or “ga ti ga.” Afterwards, infants showed
a novelty response (longer attention) to a new
string such as “wo fe fe” but showed less atten-
tion to a new string that fit the abstract pattern
of earlier items, such as “wo fe wo.” Similar
results have been obtained in somewhat older
infants (Gomez & Gerken, 1699). These find-
ings indicate an early capacity for learning of
abstract relationships. It is possible that these
results are special in that they involve speech
stimuli (Saffran & Griepentrog, 2001).

Mechanisms of Abstract
Perceptual Learning

For a number of learning phenomena involv-
ing basic sensory dimensions, we consid-
ered how perceptual templates may be refined
through practice. In a two-choice orientation
discrimination, for example, the “template”
for each orientation may consist of responses
from a set of analyzers (e.g.. orientation-
sensitive units spanning some range of ori-
entations, spatial frequencies, and positions).
In a network-style learning model, these in-
put units may be connected, perhaps through
a middle layer of “hidden™ units, with iden-
tification responses. Learning consists of the
strengthening of weights of the most relevant
analyzers with particular responses. This type
of model is consistent with a wide range of
results in perceptual learning (e.g., Dosher &
Lu, 1999; Fahleetal., 1992:; Goldstone. 1997).
Such models are concrete in the sense that the
oulput responses are determined by welighted
combinations of the elements of the input vec-
tors, consisting of the responses of analyzers
at some point in the sensory pathway (e.g., V']
cells in the orientation example).

These concrete models are inadequate to
explain more abstract examples of perceptual
learning. Consider a simple example. In a con-

cept learning experiment you are given the
task of learning to classify letter strings as
to whether they are in category A. You are
told that the strings “VXV” and “DLD" are
in the category. Additionally, you are told that
the strings “ABC” and “MRH" are not in cate-
gory A. Now, suppose you are tested with the
string “"KSK.” Is this string in category A? In
the many times 1 have done this demonstra-
tion, I have yet to encounter anyone who did
not answer *‘yes” with high confidence.

There are several important implications of
this and similar examples. First, humans read-
ily discover structure in these items. Second,
the structure is abstract. The classification of
anovel item “KSK” does not match any of the
training items in terms of the specific letters at
each posiuon. Rather, the learner apprehends
a higher order structure: the relation that the
first and last elements of the strings in cate-
gory A are identical.

Standard neural network models are con-
crete in a way that makes them incapable of
this kind of learning. Such a model would have
an input layer, possibly one or more hidden
layers, and an output layer. The nodes in each
layer would be connected to all those in the
prior and succeeding layers. Learning would
change the weights of these connections be-
tween layers, such that certain inputs would
lead to certain outputs. For our example, the
input Jayer might have 26 possible nodes to
be activated in position one of a three-letter
string; there would also be 26 possible in-
put activations for the middle position and 26
for the last position. Training on an exam-
ple such as “DLD" would strengthen the con-
nections between the letter D in first position
and the output response “category A.” The L
and final D in their respective positions would
also be weighted toward this categorization
response.

The abstraction problem is simply that af-
ter training with the examples given, the net-
work would know nothing about the test string
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“KSK.” The reason is that not one of those
input letters had previously appeared in those
positions (or any positions, in our example).

In an analysis of a related problem—a de-
vice that takes strings such as 1010 as jnputs
and gives an identical output (*1010” in this
case)}—Marcus (2001) concluded that they are
not solvable by conventional statistical learn-
ing methods. Nonetheless, only a few exam-
ples are sufficient to allow human learners to
learn this input-output rule.

Discovery of abstract, higher order rela-
tions seems to be a natural and important
feature of human perceptual learning. A key
challenge is to characterize the processes and
mechanisms of this kind of perceptual learn-
ing. These problems are very general. They
apply to the learning of shapes and relations
in vision, to melodies, phonemes, and words
in audition, and to a great many other things.

There has not been much work on learn-
ing abstract relations. One possibility is that
such learning combines statistical learning
processes with early extraction of relational
information. Kellman et al.. (1999) demon-
strated the plausibility of such an approach in
modeling the learning of shape categories for
quadrilateral figures (e.g., square, rhombus,
parallelogram, trapezoid). They assumed that
these categorizations are not built into visual
processors but must be learnable at least via
supervised learning (as, e.g., when a child
sees someone point 1o certain objects in the
world and hears a word such as “square™).
Learning, moreover, must draw only on in-
puts that are generic, that is, that are known
or can be assumed to be available from ordi-
nary visual processing. Specifically, they as-
sumed that the visual system (a) can locate
vertices or points of very high edge cur-
vature in a figure, (b) can encode interver-
tex distances on the retina (or real distances
when adequate information for size constancy
is present), and (c) that the learning sys-
tem contains operators that can compare ex-
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tents for equality (and produce a graded re-
sponse as departures from equality—e.g., of
two extents;increase). Simulations showed
that the model could learn almost all of the
planar shape names tested from one or two
examples. The network generalized its classi-
fications to novel exemplars that were rotated,
scaled, or distorted versions of the training ex-
emplars. It also handled certain distortions in
ways similar to human classifiers (e.g., tol-
erance for applying a term such as “square”
to shapes with minor deviations given by un-
equal sides or misplacement of one vertex).
Both the domain and the model are simpli-

fied in a number of respects, but this general

approach of combining early relational recod-
ing of inputs with later stages of connectionist
learning processes may hold a great deal of
promise.

CONDITIONS AFFECTING
PERCEPTUAL LEARNING

Research to date has yielded useful clues
about the processes and mechanisms of per-
ceptual learning, but we by no means have a
thorough understanding. Even in the absence
of a complete understanding of process, how-
ever, we can say a fair amount about the con-
ditions that lead to perceptual learning.

Contrast

Perceptual learning is facilitated by compar-
ison of positive and negative instances of
some category, or by cthrainng instances
that fitinto differing categories. InE. Gibson’s
(1969) view, contrast is the very essence of
this kind of learning: What is learned are
distinguishing features—those attributes that
govern the classifications that are important to
the task. Hence, perceptual learning is often
described as differentiation learning. The no-
tion that differentiation learning is facilitated
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by presentation of negative instances is at least
as old as Pavlov, who wrote,

The question can now be discussed as to how
the specialization of the conditioned reflex, or,
in other words, the discrimination of external
agencies, arises. Formerly we were inclined to
think that this effect could be obtained by two
different methods: the first method consisted
in repeating the definite conditioned stimulus a
great many times always accompanied by re-
inforcement, and the second method consisted
in contrasting the single definite conditioned
stimulus, which was always accompanied by
reinforcement, with different neighboring stim-
uli which were never reinforced. At present,
however, we are inclined to regard this second
method as more probably the only efficacious
one, since it was observed that no absolute dif-
ferentiation was ever obtainec by use of the first
method, even though the stimulus was repeated
with reinforcement over a thousand times. On
the other hand, it was found that contrast by
even a single unreinforced application of an al-
lied stimulus, or by a number of single unrein-

forced applications of different members of a

series of allied stimuli at infrequent intervals of

days or weeks, led to a rapid development of
differentiation. (Pavlov (1927). p. 117. cited in

E. Gibson. 1969, p. 117).

One way of thinking about the effects of
contrast is to view perceptual learning as a
filtering process.\In a given task a wealth of
information may be available. Learning con-
sists of selecting those features or relation-
ships that are crucial for some classification
(E. Gibson, 1969). In this process. those stim-
ulus attributes that do not govern the classi-
fication must be rejected or filtered out. The
presentation of negative instances (or mem-
bers of an alternate category) allows decor-
relation of the irrelevant attributes with the
classification being made.

Task Difficulty

Specificity of perceptual learning depends
on task difficulty in training. Ahissar and

Hochstein (1997) undertook a systematic ap-
proach to this issue. The researchers used a
visual search task in which subjects had to
decide whether a line having a unique ori-
entation appeared in an array of uniformly
oriented background lines. Two dimensions
of difficulty were manipulated. One was po-
sitional uncertainty: The unique orientation
could occur anywhere in the array on posi-
tive trials, or, in an easier version, it could
occur in only one of two locations in the ar-
ray (indicated at the start of the experiment).
The other dimension was the difference in ori-
entation between the target and background
lines; differences of 16, 30, and 90 deg were
used. Figure 7.5 shows the conditions and
data.

The task was considered to be easy either if
the orientation difference was 90 deg or if the
difference was 30 deg but targets were limited
to two positions. Similarly, the task was con-
sidered difficult for 30-deg differences with
all positions possible or for 16-deg differences
and two possible positions.

These categorizations showed utility in
predicting transfer data. Transfer to new ori-
entations and new retinal positions was sub-
stantial for subjects in the easy conditions, but
transfer was minimal for subjects trained in
difficult conditions.

Learning easy examples first may lead not
only to better transfer but also to better learn-
ing of hard cases. In fact, a single clear or
easy trial can lead to rapid improvement in
classification performance on difficult prob-
lems, a result termed the Eureka effect by
Ahissar and Hochstein (1997). These inves-
tigators suggested that the effect indicates an
interaction between high- and low-level mech-
anisms, with the high-level mechanisms di-
recting the search for distinguishing informa-
tion, followed by the attunement and selection
of relevant low-level analyzers.

The connection between difficulty of train-
ing problems and specificity of learning has
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been found in other learning tasks, for
example, in Liu’s (1999) studies of motion
discnmination. Several investigators (Liu &
Weinshall, 2000; Nakayama, Rubin, &
Shapley, 1997), however, nave suggested in-
terpretations of difficulty effects—and rapid

learning from clear examples—that do not in-
volve communication between higher strate-
gic processes and lower level analyzers. In-
stead, they propose that difficulty effects may
reflect a single process. Recall that Liu and
Weinshall (2000) found that learning a
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difficult motion discrimination did not trans-
fer immediately to an orthogonal direction of
motion, but it improved the learning rate for
the second discrimination. Liu and Weinshall
suggested that these results, and the results
showing transfer across directions of easier
discriminations, can be explained without in-
voking processes at multiple levels. They pro-
posed that stimuli in a discrimination learning
task initially activate populations of informa-
tive and uninformative analyzers. Because of
computational capacity limits, on each trial
the learning system samples only a subset of
analyzers to assess their informativeness, an
assumption proposed and supported in much
earlier research (Trabasso & Bower, 1968).
Over trials, learning effects of two types oc-
cur. Not only are individual analyzers are
found to be informative or uninformative, but
also classes of analyzers are assessed. Out-
puts of analyzers signaling particular spatial
orientations, for example, may be irrelevant
to a task in which motion direction must be
discriminated.

These assumptions can be used to explain
different kinds of learning and transfer ef-
fects (Weinshall & Liu, 2000). For difficult
discriminations, only a few analyzers have
high sensitivity for doing the task, and it takes
longer to find these than in easy discrimina-
tions, tn which many analyzers may have high
sensitivity. Also, in the learning of one task,
whole classes of analyzers may be discovered
to be uninformative. Applying this logic to the
transfer results for motion direction discrim-
ination goes as follows. In learning the first
problem, particular motion analyzers prove to
be informative. These analyzers are not very
helpful when a new direction of motion is
tested. However, another effect of learning the
first problem was that whole classes of ana-
lyzers (such as those for spatial orientation)
have been learned to be uninformative. There-
fore. particular members of such classes do
not have to be sampled during the learning of

the second problem; hence the faster learning
rate for the second problem.

Consolidation and Sleep

Some evidence suggests that perceptual learn-
ing effects do not take hold until a consol-
idation or sleep period occurs. Data from
Karni and Sagi (1993) suggest that learning
effects from a particular session reach their
peak after a consolidation period of about
8 hr. Suckgold, LaTanya, and Hobson (2000)
used the same discrimination task as Karni
and Sagi and found that maximal improve-
ment occurred when subjects were tested 48 hr
10 96 hr after a learning session. Their data
also suggested the importance of sleep in con-
solidating perceptual learning effects. When
subjects were deprived of sleep for 30 hr af-
ter the learning session, and then given two
full nights of sleep recovery, they showed no
improvement from initial levels.

The consolidation hypothesis has not been
established beyond doubt. One alternative is
that learning effects at the end of a leamn-
ing session may be masked by fatigue ef-
fects. After a suitable interval, when fatigue
effects have dissipated, learning effects are
more visible (Shiu & Pashler, 1992).

Active Classification, Attention,
and Effort

Studies in which the observer processes one
stimulus dimension in an assigned task
while stimulus variation on another dimen-
sion 1s simultaneously present find learning
effects specific to the task-relevant dimen-
sion (Goldstone, 1994; Shiu & Pashler, 1992).
Such resuits suggest the importance of atten-
tion in generating perceptual learning effects.
Auentional effects were also suggested by
Bennett and Westheimer (1991), who found
noimprovement in a grating acuity task tested
in the fovea. One of their four subjects showed
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improvement for targets presented at 7.5 deg
from the fovea, an effect they attributed to
learning to make relatively large attentional
shifts from the central visual field. Consis-
tent with this idea, the reduction in threshold
transferred fully from the horizontal training
stimulus to a vertical stimulus. Unlike ex-
planations invoking reweighting of low-level
receptors, an attentional shift notion would
predict transfer to a new orientation.

It is unfortunately difficult to untangle sev-
eral conceptually differeni ideas here. One is
that perceptual learning depends on attention.
Another is that perceptual learning depends
on the subject’s active engagement in some
kind of classification task. These possibilities
may be hard to distinguish because any ex-
perimental manipulation that would involve
assigning subjects an active task would also
elicit their attention to the stimuli. The con-
verse is easier to imagine: There are ways of
arranging subjects’ attention to stimuli with-
out assigning a task. In some studies, mere
exposure to certain stimulus vanation during
a task invo]ving another stimulus dimension
does not lead to learning (e.g., Shiu & Pashler,
1992). On the other hand, implicit learning of
structure that is not specifically task-relevant
is known to occur (e.g., Reber, 1993; Tolman,
1948). The inconsistency of results regarding
learning from incidental exposure may be due
to the possibility that carrying out some tasks
involves active suppression of irrelevant in-
formation. In other words, learning inciden-
tally while doing no task may be better than
learning while doing some conflicting task.
These issues of the roles of attention and as-
signment of active classification tasks in per-
ceptual learning are ripe for further research.

Feedback

An intniguing characteristic of perceptual
learning emphasized by E. Gibson (1969) is
that in many cases it does not require feed-
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back. Improved discrimination can come from
mere exposure. In J. Gibson and Gibson’s
(1955) scribbles experiment (discussed ear-
lier and shown in Figure 7.3), subjects judged
whether a number of curved line patterns were
the same or different from a sample pattern. If
we describe the task as detecting differences,
subjects initially made many errors that were
misses (e.g., they labeled patterns that were
physically different as “same”). Although no
feedback was given, after several runs through
the set of patterns, adult subjects achieved vir-
tually perfect discrimination performance.

Models of statistical learning that work
without feedback—unsupervised learning—
may account for some aspects of exposure-
based learning. In unsupérviscd schemes, the
weights in a network change because of cor-
relations in the inputs themselves (Hebbian
learning), or they develop under certain con-
straints, such as the constraint that units in
a hidden layer should be maximally uncor-
related with each other. A number of more
sophisticated statistical techniques can be ap-
plied to unsupervised learning as well (for dis-
cussion of such methods applied to the prob-
lems of language acquisition, see Chap. 11,
this volume).

Some studies indicate that perceptual
learning of basic visual discriminations im-
proves in similar fashion with and without
feedback (Fahle & Edelman, 1993; Fahle
et al., 1995, McKee & Westheimer, 1978).
In Shiu and Pashler’s (1992) study of learn-
ing in orientation discrimination, trial and
block feedback (feedback only after each
block of numerous trials) had similar effects
on learning. A condition with no feedback
showed smaller learning effects. Block feed-
back has also proved effective in other studies
of perceptual learning (Herzog & Fahle, 1998;
Kellman & Kaiser, 1994).

Herzog and Fahle (1998) pointed out that
the effectiveness of block feedback, as well
as a number of other commonly observed
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features of perceptual learning, are incompat-
ible with conventional neural network archi-
tectures. They proposed a number of higher
level (recurrent) mechanisms that guide learn-
ing via the allocation of attention and the use
of feedback to modulate learning rates. One
motivation for these suggestions consists of
guantitative arguments indicating that learn-
ing occurs too efficiently to involve merely the
gradual adjustment of weights in a network-
style model. Higher level mechanisms thatare
sensitive to performance level and that per-
haps incorporate knowledge of connectivity
patterns in the nervous system may be impli-
cated (Herzog & Fahle, 1993),

APPLICATIONS OF PERCEPTUAL
LEARNING

There are numerous reasons to be interested in
perceptual learning. As a somewhat neglected
topic, its study adds new dimensionality to our
ideas about learning. Many contemporary re-
searchers view it, justifiably, as a window into
processes of plasticity in the nervous system.
As has been evident in this review, it is also a
topic that connects various levels of informa-
tion processing and neural activity in interest-
ing and revealing ways.

Another reason for interest in perceptual
learning is that it has great practical import.
[t 15 likely that changes in the way informa-
tion is picked up—both in terms of discov-
ery and fluency—form some of the most im-
portant foundations of human experuse. In
an early section of her 1969 book, Eleanor
Gibson inciuded a section entitled “Percep-
tual Learning in Industry and Defense.” Her
examples included not only the grading of
cheese and cloth, sexing of chicks, and wine
tasting, but also some higher level skills
such as landing an aircraft, interpreting maps
and infrared photographs, and radiological
diagnosis.

Although the grading of products, like
William James’ earlier comments about
experts in Madeira and wheat, are not in-
consequential examples, Gibson’s other ex-
amples are perhaps of greater interest in
indicating that the scope of perceptual learn-
ing applications may extend further into com-
plex cognitive tasks than has generally been
realized. Perceptual learning may underwrite
abilities to discover complex, relational struc-
tures and become fluent in using them. The
example of grandmasters in chess is instruc-
tive, as we saw. As argued by deGroot and
by Chase and Simon, the most important dis-
tinguishing component of exceptional chess-
playing ability involves learned skills for
extracting patterns. It is not far-fetched to be-
lieve that such skills may be a major contrib-
utor also to the expertise of radiologists, pi-
lots, financial analysts, mathematicians, and
scientists.

Cognitive scientists and psychologists,
however, have done much more to document
the performance of experts than to apply per-
ceptual learning concepts to develop exper-
tise. In educational settings, one finds strong
emphases on declarative facts and concepts
and little attention to the development of ex-
pert apprehension of structure. One explana-
tion may be the lack of any obvious method for
bringing about expert information-extraction
skills. For most advanced skills, from read-
ing a financial spreadsheet to interpreting air-
craft instruments, there are accepted methods
of conveying facts and concepts, but the ex-
pert’s intuitions about patterns and structure
are believed to arise mysteriously from time
and experience.

The view is too limited, however. Not only
is the passage of time a suspect explana-
tory notion for perceptual skill, but also—
strikingly—researchers have routinely been
able to improve perceptual classifications in
relatively brief laboratory experiments. As
we have seen, these investigations have been
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carried out to address basic scientific ques-
tions, but they give hints as to methods by
which advanced skills might be directly
trained.

In recent years there have been attempts
to apply perceptual learning methods to both
basic and complex skills. Like experimental
procedures, these ordinarily use training situa-
tions in which the subject receives many short
classification trials. Successful efforts have
been made to adapt auditory discrimination
paradigms to address speech and language
difficulties (Merzenich et al., 1996; Tallal,
Merzenich, Miller, & Jenkins, 1998). For ex-
ample, Tallal et al. reporied that auditory
discrimination training in language learning
impaired children, using specially enhanced
and extended speech signals, improved not
only auditory discrimination performance but
speech and language comprehension as well.
Similar methods may be applied also to com-
plex visual displays. Kellman and Kaiser
(1994) designed perceptual learning methods
te study pilots’ classification of aircraft at-
titude (e.g., climbing, turning) from primary
attitude displays (used by pilots to fly in in-
strument flight conditions). They found that
an hour of training allowed novices to pro-
cess displays as quickly and accurately as did
civil aviators ayeraging 1,000 hours of flight
time. Experienced pilots also showed sub-
stantial gains, paring 60% off their response
times required for accurate classification.
Studies of applications to the learning of
structure in mathematics and science do-
mains, such as the mapping between graphs
and equations, apprehending molecular struc-
ture in chemistry, have also yielded suc-
cessful results (Silva & Kellman, 1999;
Wise, Kubose, Chang, Russell, & Kellman,
2000).

Efforts to improve directly the discovery
of structure and its fluent processing are rel-
atively new in educational and training con-
texts. Available evidence suggests that these
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have substantial promise, for both basic sen-
sory discriminations and for processing of
structure in éomplex and abstract cognitive
domains. Much remains to be learned about
the conditions that optimize learning, how-
ever. A number of lines of research have al-
ready suggested some of the conditions that
affect the amount and durability of learning,
To some extent, these can be investigated even
in the absence of precise process models of
perceptual learning. Understanding the vari-
ables that affect learning, of course, will have
benefits beyond the practical. Clear accounts
of when and how much learning occurs may
be among the most important contributors to
efforts to develop better models of process and
mechanism.

SUMMARY

It has been more than 100 years since William
James called attention to the phenomena of
perceptual learning and over 30 years since
the publication of Eleanor Gibson’s synthesis
of the field. What have we learned?

In several respects, progress is evident.
More exacting tests of what changes in per-
ceptual learning have been possible through
the application of signal detection methods.
Our tool kit of explanatory concepts has ex-
panded and has also become more detailed in
the form of computational modeling of no-
tions such as analyzer weighting, differentia-
tion, and unitization. At the level of biologi-
cal mechanism, research is revealing types of
plasticity that seem likely to relate to the im-
plementation of perceptual learning processes
in the brain.

However, most of these developments
serve 10 sharpen our questions and to indi-
cale how much remains to be learned. Ac-
cordingly, our answers to key questions, a
few of which follow, must be necessarily
provisional.
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Is Perceptual Learning a Separable
Form of Learning?

The evidence is persuasive that the gen-
eral idea of improvements in the pickup of
information deserves its own place among
concepts of learning. Clearly, processes of
information pickup do change with experi-
ence, and the representations that they pro-
duce change as well. These phenomena are
not encompassed by other learning concepts,
and their common involvement with informa-
tion extraction allows them to form a natu-
ral grouping. At the margins are phenomena
that may involve other forms of learning, such
as associative or procedural learning. How-
ever, at the same margins, some phenomena
thought to consist of the learning of proce-
dures or connections between stimuli and re-
sponses no doubt involve changes in the way
information is picked up and represented.

That said, clarification of the relationship
between perceptual learning and other taxo-
nomic categories of learning remains a high
priority. The ways in which concepts such
as implicit learning and automaticity crosscut
several different forms of learning should be
explored. Likewise, the relations among as-
sociative, procedural, and perceptual learning
need to be further elaborated.

[y

Is There One Process of Perceptual
Learning, or Many?

The evidence seems clear that several pro-
cesses are involved in perceptual learning.
For example, the distinction between discov-
ery and fluency processes may mark a dif-
ference in the kinds of improvement in per-
ception. Discovering new bases of response
may occur through the weighting of analyz-
ers, the synthesis of new relation detectors, or
the sampling of many information sources to
locate the relevant ones. In all of these pro-
cesses, changes occur in the content that is

extracted. Improvements in fluency, on the
other hand, can occur without changes in what
is extracted; practice in particular informa-
tion pickup tasks seems to increase speed and
decrease attentional load and effort. Possibie
mechanisms include automaticity and unitiza-
tion. At the borderline between discovery and
fluency processes is the possibility that speed
increases, not because of more rapid linking
of existing representations but because of the
discovery of higher order invariants that make
classification more efficient. Distinguishing
the operation of these processes is an impor-
tant priority for research.

Does Perceptual Learning Involve a Single
Level in the Nervous System,
or Multiple Levels?

Both the existence of multiple processes in
perceptual learning and our review of par-
ticular phenomena suggest that adaptive im-
provement in perceptual tasks involves multi-
ple levels of neural activity. Despite the lack
of consistency across tasks and procedures,
in visual tasks with humans the existence of
results indicating specificity of learning to0 a
single eye, stimulus value, or retinal location
strongly suggests involvement of cells at rel-
atively early locations in the cortical visual
streams. Physiclogical measurements of re-
ceptive fields in several senses and a variety
of species directly implicate changes in other
primary sensory cortices.

Meanwhile, a number of other findings in-
dicate the involvement of higher level (in-
cluding attentional and strategic) processes.
In some paradigms, or with minor procedu-
ral changes from those showing specificity,
learning does transfer: across eyes, across
retinal positions, or across motion directions.
Engagement of attention for a specific task
affects learning, and initial presentation of
easier examples facilitates it. Effects of trial-
by-trial feedback do not indicate much about
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the locus of learning, but when block feed-
back produces effects on a par with trial
feedback, the existence of higher level pro-
cesses supervising and directing learning is
intimated. .

Finally, though not as often explored as
yet by researchers, much of human perceptual
learning involves abstract relationships. Little
1s known about the mechanisms of this sort of
learning, but it cannot arise exclusively from
modifications of receptive fields in primary
sensory cortical areas. Attaining a computa-
tional and physiological account of high-level
perceptual learning 1s among the many chal-
lenges remaining for researchers.
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