
Chapter 18
Challenges in Understanding Visual Shape
Perception and Representation: Bridging
Subsymbolic and Symbolic Coding

Philip J. Kellman, Patrick Garrigan, and Gennady Erlikhman

18.1 Introduction

Our everyday perceptual experience is of a world populated by objects and surfaces
arrayed in space, as well as of events that produce changes in these arrangements
over time. Successful perception, thought and action depend on processes that pro-
duce accurate descriptions of these objects and events. Often, object contours are
only partially visible as we move or as they move around us. Nevertheless, we expe-
rience a unified, stable world: the squirrel running through the tree branches appears
as a single animal, not as dissociated squirrel-bits, and the house seen through the
slats of a fence is one house, not a collection of independent house fragments. These
perceptual outcomes depend on a number of segmentation, grouping, and interpola-
tion processes, which, taken together, perform some of the most crucial and remark-
able tasks in allowing us to perceive the world visually. They also pose some of the
greatest challenges in understanding the underlying processes and mechanisms of
vision.

Researchers in the past several decades have made considerable progress on a
number of important components of these perceptual capabilities. Much is known
about early cortical processing of visual information. At a more abstract level, ex-
perimental data and computational models have revealed a great deal about contour,
object, and shape perception. Neurophysiological and imaging methods have pro-
vided evidence for functional specificity in areas of cortex for animate and inanimate
objects, tools, faces, and places. However, between the initial encodings by spatially
localized units and higher level descriptions of contours, surfaces, objects and their
properties lies a considerable gap. To use a chess analogy, we do not understand
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Fig. 18.1 Spiritual, culinary, and commercial aspects of shape perception. (A) This 10-year-old,
partially eaten cheese sandwich sold for $28,000 on Ebay; the owner claimed to see the face of
the Virgin Mary in it. (B) Description from the Ebay ad. (See text.) (From http://www.slate.com/
articles/news_and_politics/explainer/2004/11/the_28k_sandwich_that_grew_no_mold.html)

much about the “middle game.” The study of shape perception and representation
is important in its own right but also because it gives us a sharp focus on some of
the biggest unsolved general issues in the computational and neural understanding
of perception.

Early cortical encodings (e.g., responses of neural units in V1) are spatially local,
retinally specific, and modulated by oriented contrast. The functionally important
outputs of perceiving are constancy-based descriptions of bounded objects, their
contours, surfaces, and shapes, and their arrangements in space. Our goal in this
chapter is to shed light on shape perception, but also to use it as a vehicle to focus
on major issues that must be addressed in order to understand how early visual
processes connect to high-level representations. We describe (1) the dependence of
shape perception on segmentation and grouping processes, and (2) properties that
(some) shape representations must have and how they might be assembled from
lower level encodings. In both discussions, we end with thoughts and efforts on a
crucial frontier of work in these areas, which we might call “modeling the middle.”

18.2 Some Useful Examples

To begin, we offer two demonstrations that illustrate the flexible and abstract na-
ture of shape representations and the important issue of what gets assigned a shape
representation.

What is shown in Fig. 18.1? It is perhaps the most famous cheese sandwich in
history. The story, in the owner’s own words in an E-bay advertisement, is given
in Fig. 18.1B. The image and description may relate to several different scientific
mysteries. Given that this cheese sandwich has had “no disingration [sic]” in 10
years, one of the mysteries is, obviously: What are they in putting in the bread?!

http://www.slate.com/articles/news_and_politics/explainer/2004/11/the_28k_sandwich_that_grew_no_mold.html
http://www.slate.com/articles/news_and_politics/explainer/2004/11/the_28k_sandwich_that_grew_no_mold.html
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Fig. 18.2 Which region was part of the display in Fig. 18.1A? The difficulty of answering provides
a simple demonstration that we encode simplified and abstract descriptions of displays, not pixel
maps or records of feature activations

For us, the more important fact is that humans spontaneously see a face in the
toast. This reveals more than one interesting fact about shape representations. A key
observation is that such representations are flexible enough to be matched to new
input that is markedly different from previously experienced faces. Putting aside
whether the image is in fact the Virgin Mary, or bears, as others have suggested, a
resemblance to Greta Garbo or a young Shirley Temple, the striking fact is that any
recognition here is not a match at the pixel level. Presumably, if you have seen Garbo
before, she was not impersonating a cheese sandwich. More formally, our encoding
of this display is both much less and much more than a literal copy of the stimulus.
Consider Fig. 18.2. Suppose we tell you that one of the panels shows a region of
Fig. 18.1A. Without looking at Fig. 18.1A, which is it—Fig. 18.2A or 18.2B? We
doubt anyone can answer correctly with confidence. Now, compare the regions to
Fig. 18.1A. With serious effort, you can see that the region in Fig. 18.2A matches
an area near the left eye, and the region in Fig. 18.2B also matches, around the right
eye. Even with all images visible, verification of the match is an effortful task. This
kind of demonstration, and many ordinary observations, indicate that we preserve
very little of the point-by-point stimulus in encoding shape information.

This should not be seen as a shortcoming of our visual processing. The ability to
see a face here and to detect similarities to previously seen faces implicates extrac-
tion of relevant structure while ignoring irrelevant variation. The structure extracted
must be encoded in some abstract form sufficient to trigger activation of previously
encoded structure. Two other notable points here are that we are able to see a face
while still encoding the entire object as a cheese sandwich, and that we sponta-
neously see the face despite the low expectations (and low prior odds, in Bayesian
frameworks) for seeing faces in partially eaten cheese sandwiches. Most important,
however, is the suggestion of an abstract, flexible representational format that allows
matching of selected structure to categorical shape information encoded or formed
earlier.

Our second demonstration leads more directly into the connection between shape
perception and visual segmentation and grouping processes. Glance at the picture in
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Fig. 18.3 Illustration of the
dependence of shape
descriptions on object
formation. (See text.)
(Reprinted with permission
from fotosearch.com)

Fig. 18.3 and then cover it up. Looking at Fig. 18.4, which panel, A or B, shows a
shape that was present in the original figure? The question is difficult to answer.

Now uncover Fig. 18.3. Both regions turn out to be part of the picture. The region
in Fig. 18.4A is part of the cow’s head, and the shape in Fig. 18.4B is part of the
fence post. Both of the regions shown in Fig. 18.4 are fairly well delineated by con-
trast boundaries in the image.1 Naively, we might expect that bounded regions in the
visual input comprise the objects to which we assign shape descriptions. Examples
such as these demonstrate that such an expectation is often incorrect.

We assign shape descriptions to objects. The detection of objects in a visual
scene, if it is to correspond to actual physical objects in the world, must overcome
a number of obstacles. Perhaps most important is occlusion. A single object in the
world may project to the retinae of our eyes in multiple, spatially separated regions,
as illustrated by the cow in Fig. 18.3. A single object may have a variety of col-
ors, such that lightness and color boundaries are incomplete indicators of object
boundaries. Fortunately, our visual processing includes sophisticated mechanisms

Fig. 18.4 Which region is
part of the display in
Fig. 18.3? (See text)

1These are mostly, but not fully, delineated by contrast boundaries. The difficulty in using contrast
boundaries alone to find the functionally important shapes in the environment is another important
aspect of the relation between processes that accomplish segmentation and shape representation.

http://fotosearch.com
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for perceiving coherent objects from information that is fragmentary in space (and
also in time, although we do not consider spatiotemporal fragmentation here; see
[37] for relevant research and [32] for a review).

Shape perception in biological vision, then, means something more than finding
regions of roughly homogeneous lightness and/or color. Rather, shape encoding ap-
pears to be reserved for functional units delivered by segmentation and grouping
processes. In the next section, we describe processes of interpolation that connect
visible regions across gaps to furnish the objects that receive shape descriptions. In-
troducing these will show their relevance to shape perception and also highlight the
issue of “modeling the middle” in vision science.

18.3 Interpolation Processes Underlying Object Perception

From the perspective of an organism that needs to see, the projection of objects
and scenes in the world onto the sensitive surfaces of our eyes is beset by several
chronic problems. The world has three spatial dimensions, but information is lost
as it is projected onto the essentially two-dimensional surface of each retina. Light
moves in straight lines, and objects are usually opaque; these facts dictate that in
ordinary environments nearer objects will often partly occlude farther ones, meaning
the projections of farther objects will be interrupted by the projections of nearer
ones. Commonly, a single object may project to multiple, spatially separated retinal
regions.

When motion of objects or observers is involved, these patterns of occlusion
become more complex, changing over time. Different parts of a single object may
be visible at different times, while some parts of objects may never project to the
eyes at all. Such problems of occlusion are not exclusively products of modern,
cluttered environments; some of the richest and most complex patterns of occlusion
occur when we view objects and scenes through foliage, a situation that has likely
been important in human behavior over evolutionary time.

Perhaps these enduring constraints on seeing are responsible for the sophisti-
cated and elegant visual processes that serve to overcome occlusion. The human
visual system possesses remarkable mechanisms for recovering coherent objects
and surface representations from fragmentary input. Specifically, object and surface
perception depends on interpolation processes that overcome gaps in contours and
surfaces in 2-D, 3-D, and spatiotemporal displays. Recent research suggests that the
mechanisms for doing so are deeply related in that they exploit common geometric
regularities.

18.4 Contour and Surface Processes

Evidence suggests that there are two kinds of mechanisms for connecting visible
areas across gaps: contour and surface interpolation. These processes can be dis-
tinguished because they operate in different circumstances and depend on different
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Fig. 18.5 Contour and surface interpolation. (A) Both contour and surface interpolation processes
contribute to perceived unity of the three black regions behind the gray occluder. (B) Contour
interpolation alone. (C) Surface interpolation alone. (D) Both contour and surface interpolation
have been disrupted, causing the blue, yellow, and black regions to appear as three separate objects.
(See text)

variables. Contour interpolation depends on geometric relations of visible contour
segments that lead into contour junctions. These geometric constraints have been
most frequently studied in 2-D displays, but they have been shown to govern con-
tour interpolation in 3-D scenes as well [33]. Surface interpolation in 2-D displays
can occur in the absence of contour segments or junctions; it depends on the similar-
ity of lightness, color, and/or texture of visible surface patches. In 3-D scenes, it also
depends on the orientations and positions of visible fragments [9]. For simplicity,
we describe interpolation processes in 2-D displays here.

Figure 18.5 illustrates distinguishable contour and surface interpolation pro-
cesses, as well as some of their interactions. In Fig. 18.5A, the three black regions
appear as one object connecting behind the gray occluder. Both the contour rela-
tionships of the black regions and their surface similarity contribute to this per-
cept. In Fig. 18.5B, the surface colors of the visible regions have been altered to
block surface interpolation. However, the relations of the contours still engage con-
tour interpolation, leading to an impression of a unified object despite the color
differences. Figure 18.5C shows the converse arrangement. Here, the geometry of
contour relatability (see below) has been disrupted blocking contour interpolation.
Due to surface interpolation (included by the matching surface color of the frag-
ments), however, there is still some impression that the three fragments connect
behind the occluder. Finally, Fig. 18.5D shows both contour and surface interpola-
tion disrupted. Here, the blue, yellow, and black regions appear as three separate
objects.

Figure 18.6 further illustrates the action of surface interpolation. Surface interpo-
lation in Fig. 18.6B causes the same black objects that appear separate in Fig. 18.6A
to appear connected. Surface interpolation also causes the circle within the gray area
to appear as a hole, rather than a spot on top of a surface [54]. In this display, con-
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Fig. 18.6 Rules of surface interpolation under occlusion. Contour relations in both displays are ar-
ranged so as not to produce contour interpolation behind the occluder. (A) The three black regions
appear as separate objects; the circle on the right appears as a spot on top of the gray background.
(B) The three black regions have been positioned so that surface spreading within extended tan-
gents of edge orientations at points of occlusion allows areas to connect behind the occluder. A
bloblike single object, whose contours behind the occluder are vague, is perceived. The black cir-
cle is now seen as a hole in the occluder. The white circle also illustrates surface spreading; it
appears as a hole through which the white background is seen

tour interpolation is blocked due to misalignment of the edges. It has been shown
that the surface interpolation process under occlusion integrates areas of similar
surface quality (1) when they fall within edges connected by contour interpolation,
(2) when they fall within the extended tangents of nonrelatable edges, or (3) when
the fall within a fully surrounding area (as in the case of the white dot in Fig. 18.6B)
[55]. Whereas contour interpolation processes are relatively insensitive to relations
of lightness or color, the surface process depends crucially on these.

18.5 Contour Interpolation

Central to establishing perceived shape is the process of contour interpolation,
which unifies visible regions across gaps (for reviews, see [31, 33]). Perhaps the
most basic question in understanding visual object and surface formation is what
stimulus relationships cause it to occur. This question is fundamental because it al-
lows us to understand the nature of visual interpolation. For contour interpolation,
certain relations of visible contours lead the visual system to fill in connections be-
tween visible regions whereas other contour relationships do not. Discovering the
geometric relations and related stimulus conditions that lead to object formation is
analogous to understanding the grammar of a language (e.g., what constitutes a well-
formed sentence). This level of understanding is also most crucial for appreciating
the deepest links between the physical world and our mental representations of it.
While these efforts are at first descriptive, as unifying principles are revealed, they
allow us to relate the information used by the visual system to the physical laws
governing how objects and surfaces project to the eyes, in the form of deep con-
straints about the way the world works (e.g., [16, 36]) or as natural scene statistics
(e.g., [14]).
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18.6 Triggering Contour Interpolation

A general fact about contour interpolation is that interpolated contours begin and
end at junctions or corners in visible contours (tangent discontinuities). These are
locations at which contours have no unique orientation [44, 46]. Most typically in
vision, they are intersections of two oriented contours, such as “T” junctions that
form when the boundary of an occluding object interrupts that of an occluded object.
Whereas a zero-order discontinuity would be a spatial gap in a contour, a first-order
or tangent discontinuity is a point at which the direction of the contour changes
abruptly. Besides first-order discontinuities, some have suggested that second-order
discontinuities (as where a straight segment joins a constant curvature segment, with
the slopes matching at the join point) might also play a role in triggering interpola-
tion ([2–4, 46]; for discussion see [33]). The importance of tangent discontinuities
in visual processes coping with occlusion stems from an ecological invariant: Ship-
ley and Kellman [46] observed that in general, interpolated contours begin and end
at tangent discontinuities and showed that their removal eliminated or markedly
reduced contour interpolation. In the patterns that induce illusory contour forma-
tion, “L” junctions, rather than T junctions, are most common. In these displays,
the presence or absence of tangent discontinuities can be manipulated by rounding
the corners of inducing elements, a manipulation that experimental evidence shows
reduces or eliminates contour interpolation (e.g., [3, 33, 37, 46]).

18.7 Contour Relatability

What determines which visible contour fragments get connected to form objects?
Although tangent discontinuities are ordinarily necessary conditions for contour in-
terpolation, they are not sufficient. After all, many corners in images are corners of
objects, not points at which some contour passes behind an intervening surface (or
in front, as in illusory contours).

Empirical research shows that contour interpolation depends crucially on ge-
ometric relations of visible contour fragments, specifically the relative positions
and orientations of pairs of edges leading into points of tangent discontinuity
[11, 26, 29–31, 33, 37, 44, 46]. These relations have been described formally in
terms of contour relatability [29, 49]. Relatability is a mathematical notion that de-
fines a categorical distinction between edges that can connect by interpolation and
those that cannot (see [29]). The key idea in contour relatability is smoothness (e.g.,
interpolated contours are differentiable at least once), but it also incorporates mono-
tonicity (interpolated contours bend in only one direction) and a 90° limit (interpo-
lated contours bend through no more than 90°). Figure 18.7 shows a construction
that is useful in defining contour relatability. Formally, if E1 and E2 are surface
edges, and R and r are perpendicular to these edges at points of tangent discontinu-
ity, then E1 and E2 are relatable if and only if:

0 ≤ R cos θ ≤ r.
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Fig. 18.7 Contour relatability. Contour relatability describes formally a categorical distinction
between edges that can be connected by visual interpolation and those that cannot. (A) Geomet-
ric construction defining contour relatability (see text). (B) Alternative expression of relatability.
Given one visible contour fragment terminating in a contour junction at (0,0) and having orienta-
tion 0 deg, those orientations Θ that satisfy the equation tan−1(y/x) ≤ Θ ≤ π/2 are relatable. In
the diagram, these are shown with solid lines, whereas nonrelatable orientations are shown with
dotted lines. (Adapted from [23]. A unified model of illusory and occluded contour interpolation.
Vision Research, 50, 284–299. Reprinted with permission)

Although the precise shape of interpolated contours is a matter of some disagree-
ment, there are two properties of relatability that cohere naturally with a particular
class of contour shapes. First, it can be shown that interpolated edges meeting the
relatability criteria can always be comprised of one constant curvature segment and
one zero curvature segment. Second, it appears that this shape of interpolated edges
has the property of being a minimum curvature solution in that it has lowest max-
imum curvature: any other first-order continuous curve will have at least one point
of greater curvature [29]. This is a slightly different minimum curvature notion than
minimum energy.

Relatability is primarily a categorical distinction, indicating which edges can be
connected by contour interpolation. Object perception often involves a discrete de-
termination of whether two visible fragments are or are not part of the same object.
Figure 18.8 shows examples of relatable and nonrelatable edges, in both percep-
tion of partly occluded objects and perception of illusory objects. Complete objects
are formed in the top row but not in the bottom row. In general, object formation
has profound effects on further processing, such as generation of a representation
of missing areas, generation of an overall shape description, and comparison with
items or categories in memory. Research indicates that the representation of visual
areas as part of a single object or different objects has many important effects on
information processing [6, 33, 56].

Relatability is a mathematical formulation that accounts for empirical findings
on the geometric relations that support contour interpolation. It incorporates several
separable claims, all of which have received substantial confirmation in empirical
research. These include the requirements that the edge fragments that participate in
interpolation are those terminating in tangent discontinuities [18, 33, 44, 46], the re-
quirements that interpolated edges have orientations matching their inducing edges
at the points of tangent discontinuity, are smooth (differentiable at least once), and
monotonic (i.e., they do not doubly inflect) [10, 11, 29, 33, 37, 48]. Most evidence
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Fig. 18.8 Examples of relatable and nonrelatable contours. (See text)

Fig. 18.9 Outputs of
neurally plausible models of
contour interpolation. The top
row shows the raw image
given to each model, and the
bottom row shows the output
(real and interpolated edges).
(A) Output of the Heitger
et al. [21] model for illusory
contour display. (B) Output of
Kalar et al. [23] model for an
occlusion display. (Adapted
from Kalar et al. [23], Vision
Research. Reprinted with
permission)

also supports the idea that interpolation is weak or absent for Θ greater than 90 deg
in Fig. 18.9B [10, 11, 14, 26, 33, 49], although data also suggests that the cutoff may
not be abrupt [11, 19]. Although discrete classification of visible areas as connected
or not is important, there is also evidence that quantitative variation exists within the
category of relatable edges [5, 10, 29, 47–49]. Singh and Hoffman [49] proposed an
expression for quantitative decline of relatability with angular change.

Some work based on scene statistics has been interpreted as showing some de-
viations from the predictions of relatability. Geisler & Perry [13] reported statistics
about the probabilities of arbitrary contour segments being connected in a variety
of scenes. In the same paper, the authors reported that observers’ subjective judg-
ments of contour connectedness conformed reasonably well to the scene statistics.
Compared to relatability, the most systematic deviation appeared to be that relata-
bility allows connections between edge fragments of opposite contrast polarity, a
phenomenon that has been confirmed experimentally [10, 15, 24, 28], whereas the
collected scene statistics indicate that such connections are highly improbable. The
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authors’ data also indicates that an ideal observer using the natural priors they ob-
tained would interpolate only between very nearly collinear edge fragments and
primarily those within one deg of separation. These outcomes are surprising, in
that they markedly differ from considerable evidence obtained from a variety of
paradigms about human contour interpolation [11, 18, 33, 42, 48].

The discrepancies are not difficult to understand, however. The scene statistics
gathered by Geisler & Perry [13] involved the probabilities of any arbitrary edge
fragments in scenes being connected. A key geometric invariant in contour inter-
polation is that occlusion produces tangent discontinuities in the optical projection
[29] and evidence indicates that this information is influential in contour interpola-
tion (e.g., [44, 46]). Sampling edge fragments terminating in tangent discontinuities
would involve a more restricted set of edge pairs and these may produce different
scene statistics. The conditional probability of a pair of edge fragments being part
of the same contour in the world, given their relative orientation, position, and sepa-
ration may differ from the conditional probability of a pair of edge fragments being
part of the same contour given those spatial relations and the fact that each termi-
nates in a contour junction (typically a T junction, for potential cases of amodal
completion). The latter seems more relevant to understanding the relations of envi-
ronmental regularities to contour interpolation. We do not know whether these two
conceptually different conditional probabilities would differ in their empirical dis-
tributions, but intuitively, the locations, orientations, sizes, etc. of occluders seems
unlikely to be uniformly distributed across images.

Also difficult to interpret is the empirical study reported by Geisler & Perry [13],
which involved subjective judgments of 7 observers, two of whom were not naïve.
Observers were instructed that half of edge pairs presented in the study would be
connected. Such instructions seem incompatible with an attempt to assess partici-
pants’ natural perceptions of whether two edges appear to be connected under oc-
clusion or not. These instructions also did not reflect the priors derived from scene
statistics, so observers’ results were compared to arbitrarily revised scene statistics
incorporating a 0.5 prior on edges being connected, a prior that far exceeded the
“natural priors” obtained from Geisler & Perry’s scene statistics. Unlike many stud-
ies that have used objective performance methods [10, 30, 33, 37], the subjective re-
port methods employed by Geisler & Perry [13] in combination with the prompting
of participants to judge 50 % of edge pairs as connected make the task fraught with
demand characteristics, as well as difficult to relate either to scene statistics or to
other data on interpolation performance. One other major difference from both prior
research and ordinary perception of natural scenes is that each “edge” presented in
the experiment was a tiny Gabor element (with length roughly 6–7 arc min), and
pairs of elements had comparatively large separations (occluders had diameters of
40, 80, and 180 arc min). It is known that strength of interpolation between pairs
of inducers is a roughly linear function of support ratio [5, 48, 50], defined as the
length of interpolated edge as a fraction of total (real plus interpolated) edge length.
Relatively little or very weak interpolation would be expected with support ratios
ranging from 0.07–0.25, as in this study, and the scene statistics in this study did
not incorporate inducing edge lengths in any manner. It would be interesting to
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study the relationship of contour relatability to richer scene statistics in future re-
search. Existing data support the geometric relations encompassed by relatability as
a formal account of human contour interpolation, and the value of this particular ge-
ometry might indeed bear close relations to relevant statistical regularities in natural
scenes.

18.8 Neural Models of Contour Interpolation

The model of object formation from fragmentary information, as we have sketched
it here, as well as in more elaborate treatments [23, 25, 26, 33], assumes that certain
kinds of inputs have been identified in prior visual processing. The inputs to contour
interpolation, for example, are oriented edges of surface regions. The contour orien-
tations that matter are those leading into tangent discontinuities, which we assume
can be located by earlier visual processing. Whether such contour inputs connect
depends on geometric relations of their orientations, which we assume are also en-
coded. Once a contour segment is interpolated, it, along with the physically given
parts of the contour, become a continuous contour that closes, defining the boundary
of some object. To these closed contour tokens, we assign a perceived shape.2

A variety of neural-style models have been proposed as giving the underlying,
neurally plausible mechanisms by which the above computations are performed
[17, 21, 23, 31]. Therefore, it would seem that the general issues we raised at the
start of this paper have been addressed: High-level information processing accounts
of visual object completion have been connected to plausible neural mechanisms,
providing not necessarily final or correct explanations, but at least explanations that
show how we can go from initial registration of visual information to high-level
scene descriptions.

This impression, however, would be as illusory as many of the contours per-
ceived in the visual completion literature. Although neural-style models of visual
completion exist, in general, they illustrate, rather than solve, the problem of bridg-
ing low-level visual coding and higher level, symbolic representations. Figure 18.9
helps to illustrate the issues.

In the figure are displays presented to two contour interpolation models
(Fig. 18.9A) as well as the outputs of those models (Fig. 18.9B). The display and
output on the left are from Heitger et al. [21] and those on the right are from Kalar
et al. [23]. It is evident that the models fill in illusory and occluded contours based
on the input contours. These models use local oriented edge detectors and grouping

2Obviously, this brief description leaves out many additional specifics. For example, our treatment
here has been confined to 2-D interpolation and the “object” formed by completing the boundary
would be a planar (2-D) object. Consideration of 3-D and spatiotemporal object formation is dis-
cussed in more detail elsewhere [33, 37], but the current treatment is sufficient to raise the general
issues about modeling that are the focus of this section.
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operators that examine the relations of activated units to determine interpolated ac-
tivation in the space in between. Each pixel in the interpolated area is the output of
a grouping operator that was positioned at that location.

These models and others (e.g., [17]) show that an early stage of interpolation
can be done by sets of local operators that look at relations of contour activation in
nearby regions and produce activation maps for regions in between. The input oper-
ators (edge detectors) and grouping operators are consistent with known character-
istics of early visual cortical areas [20, 21], and their outputs likely approximate an
important early stage in object formation [23]. However, it is crucial to understand
what these models do and do not do. Specifically, the models have indicated points
of interpolation in areas with no stimulus contrast, but they don’t do much else.
When we look at the output images, we see complete contours that span between
input edges, but the models do not connect the interpolation points into contour to-
kens, nor do they connect the interpolated and real contours into contour tokens.
They also do not certify whether these contours close, assign shapes to either the
contour parts or the enclosed regions, determine what the objects are, or indicate
which object is closer in the display. For example, in the display in Fig. 18.9B, we
see two rectangles, with the gray rectangle partly occluding the black one. Given
edge orientations and positions, the computational interpolation model of Kellman
& Shipley [29] would interpolate the edges as shown. The model of Kalar et al. [23],
intended as a neurally plausible implementation of the Kellman & Shipley model
that operates on raw images, produced the image in Fig. 18.9B. The model’s output,
however, and the predecessor model of Heitger et al. [21], consists of a collection
of points of “interpolation activation”: it marks where interpolated edges would oc-
cur, but it does not produce a representation of connected edges, closed objects or
depth relations. The apparent continuity of contours and shapes of closed figures
are generated by the viewer when they look at the model’s output image. The model
itself does not “know” what is connected to what. We might call these “subsym-
bolic” models. Thus, “local” interpolation models leave a lot of work to be done.
They build from the kinds of spatially localized neural units that exist in cortex, but
they stop short of giving contour and object descriptions needed for higher level
representations. Those descriptions need to be much more abstract, symbolic repre-
sentations, as we discuss in the next section.

18.9 Shape Perception

Modern work in computational vision has typically addressed shape with a variety
of sophisticated mathematical techniques (for a review, see [8]). These techniques
allow great precision. For contour shape, having even a few data points allows, for
example, polynomial approximation that specifies all of the contour’s derivatives at
all points. Yet neither these computational techniques nor neurophysiological data
about the functions of cortical neurons has yet produced a real understanding of
shape perception in biological vision.
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Fig. 18.10 Examples of
shape invariance. Which of
the figures in B, C, or D, has
the same shape as the figure
in A? (See text)

To understand some of the key issues in shape perception, we first specify some
properties that human shape representations must have. These will help us to un-
derstand the central problem of bridging between early visual encoding (e.g., by
local, orientation-sensitive units) and higher-level notions of shape. On one hand, it
is clear that human perceptual abilities to see shape and shape similarities implicate
more abstract symbolic coding than can be accomplished by sets of local orienta-
tions. On the other hand, it seems doubtful that our brains represent shapes with
the arbitrary level of precision possible with mathematical techniques common in
computer vision. For example, for the shapes of occluded contours, it has been ar-
gued [11] that experimental data is fit best by quintic (5th order) polynomials. This
is no doubt a faithful description of curve-fitting results; however, one may wonder
whether we should take seriously the idea that the brain really uses such a complex
representation for shape and how it might generate quintic polynomials. Certainly
no brain mechanism for generating them has yet been proposed. Moreover, such a
representation, in a given case, would suggest a highly precise contour description,
whereas psychophysical tests on human representations would likely show that our
shape memory, at least, is substantially more vague.

For simplicity, we focus primarily, but not exclusively, on contour shape [12, 27].
Even the relatively basic shape notions we will consider evoke the issues of ab-
straction and simplification in shape representations that we wish to illustrate. Fig-
ure 18.10 illustrates some properties that seem to characterize human contour shape
representations.

A shape representation for the contour given in Fig. 18.10A is sufficient to allow
a shape match with one or more of the shapes in Figs. 18.10B, C, and D. This is
possible despite changes in size, orientation, or even the elements comprising the
figure. In terms of the lines or elements making up the figure, the display in 18.10C
is most like 18.10A, yet inspection readily reveals that it is the only figure whose
overall shape is different from 18.10A. Some of the key properties indicated by
these simple shape-matching capabilities are that shape representations have some
degree of scale invariance, orientation invariance, and that a common shape can be
extracted despite differing constituent elements. These points were made long ago
by the Gestalt psychologists (e.g., [34]), who emphasized that the simple summation
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Fig. 18.11 Illustration of gist
and similarity relations in
shape representation. (See
text.) (From http://lolyard.
com/3448/cloud-fish)

of sensory elements did not comprise form; indeed, form consists of relations, which
can be conveyed by many different kinds of sensory elements.

The modern version of the Gestalt point is fully relevant to primary issues in
understanding shape and the connection between early visual coding and symbolic
representations. We know that the patterns in Fig. 18.10 stimulate sets of spatially
localized, orientation-sensitive units in the visual cortex (in V1 and V2). Yet hu-
man shape-matching performance clearly indicates that seeing the same or similar
shape is not a matter of activating the same local orientation-sensitive units. The
transformation of size changes the spatial frequency of the relevant units; changing
orientation of the shape alters the relevant local orientations that are detected; and
various elements can be used such that there is little or no overlap in populations of
basic detectors that are activated and lead to perception of the same shape. How do
we get from the stage of local orientation encoding to more abstract percepts and
representations of shape?

Figure 18.11 illustrates two other crucial properties of human shape perception
and representation. One we might call “gist.” The cloud shown in Fig. 18.11A has
quite ragged edges, including various protrusions and “frayed edges” in various
places. A fully precise contour representation that matched all of the visible bound-
ary points (e.g., what one might get by doing a precise, higher-order polynomial fit)
would give a very jagged and complicated boundary contour representation. It is
doubtful that, after looking briefly at such an image, we possess any such fully de-

http://lolyard.com/3448/cloud-fish
http://lolyard.com/3448/cloud-fish
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tailed representation. As a thought experiment, if we showed observers such images,
took them away, and then presented new images in which the perturbations along
the edges had been moved or changed, it is unlikely that observers would be good at
detecting these changes (for a more detailed example, see [12]). Our representations
encode the overall shape at a level that is likely to be relevant to our functioning in
the world. Encoding all of the little wisps and deviations along the edges in this case
are unlikely to be of functional importance (although given specialized tasks, this
could change).

The other property illustrated in Fig. 18.11 is closely related to gist. It is that
our shape representations support similarity relations in a constrained but flexible
manner. The shape similarity of the cloud and the fish are obvious. Slightly more
demanding is the question of which of two aircraft more closely matches the cloud
shape. Pretty clearly it is the aircraft in Fig. 18.11D (the one on the right). These
shape matching feats are remarkable because the matching images are far from a
match at the pixel level or at the level of sets of local orientation detectors activated
by the two patterns.

In summary, the visual system must somehow get from early local encodings of
oriented contrast to more global and abstract shape representations. These represen-
tations are unlikely to be precise polynomial approximations to detailed boundaries,
but are likely to be simplifications in some way. And these simplifications are likely
to be the very properties that allow approximate matching to similar forms that are
by no means identical, either at the one extreme of activating the same population of
oriented units or at the other extreme of matching a precise mathematical description
of a bounding contour.

18.10 Constant Curvature Coding: An Example of a Bridge
Between Subsymbolic and Symbolic Shape Coding

The foregoing discussion of requirements of human contour shape representation
may be useful in indicating important constraints on theories of biological shape rep-
resentation, but they also represent a set of daunting challenges. Much of the point of
this discussion is that we do not currently have suitable theories of shape that meet
these requirements. There is no doubt, of course, that mathematical approaches for
specifying shape are flexible enough such that we could specify symbolic repre-
sentations that meet the requirements, but that would leave open the question of
how such representations are acquired from the initial encoding of visual informa-
tion. We do not offer a comprehensive answer to these problems, but we propose
a scheme that addresses some particular issues, and, more generally, offers an ex-
istence proof of how more symbolic tokens might be acquired from subsymbolic
precursors.
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18.11 Early Symbolic Encoding of Contours: Arclets

Based on considerations of simplicity, coding efficiency, and some existing psy-
chophysical and neurophysiological data, we have developed a scheme that uses the
simplicity of the circle as the link between low- and higher-level vision [12, 27].
We propose that neural circuits exist that combine small groups of oriented units
that are linked by constant turning angles, e.g., they encode constant curvature seg-
ments (including zero curvature) of contour shape. We call these arclets. Any open
contour (including a part of the bounding contour of an object) may be described
in terms of segments of constant curvature. In recent work, we have proposed two
computational models of how this encoding could work, with the models differing
in the tradeoff between the load in terms of number of segments and the fidelity of
getting a near exact match to a viewed contour [12]. We refer the reader to that work
for details.

For present purposes, the more important point is how arclets can operate as
a bridge between subsymbolic and symbolic encoding. In their application to in-
terpolation, activation initiated by real contours spreads along restricted paths in
a network of oriented units; these paths consist of arclets. Because of this restric-
tion, there is a unique path of interpolation connecting any relatable edges [29, Ap-
pendix A]. In their application to shape coding, arclets are symbolic tokens that are
activated by signals in chains of several oriented units. This allows a natural means
of handing off the information encoded by local oriented units to higher-level shape
representations.

The central idea is that an important basic level of abstract shape encoding con-
sists of contour representations comprised of one or more constant curvature seg-
ments. These middle-level shape representations result from detectors that are ac-
tivated by sets of oriented units in particular relations to each other (cf., [10]). As
illustrated in Fig. 18.12, a given arclet is activated if a chain of oriented units form-
ing a collinear or co-circular path are simultaneously activated. At the bottom of
this figure is the viewed object. The object activates sets of oriented units (shown
as Gabor patches) in early cortical areas. Arclet detectors respond to chains of these
units having a constant angular relation (turn angle).

This is the locus of the transition from local, contrast-sensitive elements to the
first symbolic representation. The activated arclet token contains three pieces of in-
formation: the scale (spatial frequency) of the oriented units, the turn angle relating
them (20 deg in the example given), and the number of oriented units (encoding seg-
ment length). We assume some system of competition to find the best-fitting arclet
for any segment, as arclets of different scales and turn angles may fit to differing
degrees.

Different arclets code different curvatures. Activation of a single arclet indicates
the presence of that curvature at a certain position and orientation. The encoding of a
constant curvature segment extends along a contour until a transition zone, at which
arclets of that curvature exceed some threshold of accurately matching the con-
tour (or are less well activated than some arclet having a different curvature value).
A shape representation consists of a set of constant curvature values characterizing
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Fig. 18.12 Illustration of constant curvature segment encoding. (See text.) (From [27]. In M.A. Pe-
terson, B. Gillam, & H.A. Sedgwick, (Eds.) In the Mind’s Eye: Julian Hochberg on the Perception
of Pictures, Film, and the World. New York: Oxford University Press. Reprinted with permission)

segments along a contour, along with some marking of transition zones between
constant curvature segments. (For working models of this scheme, see [12]).

As shown in Fig. 18.12, arclets have the interesting property of permitting con-
current scale-variant and scale-invariant coding of contours. A problem for under-
standing invariance in human perception is that standard mathematical notions of
curvature do not capture shape invariance. A large circle and a small circle obvi-
ously have the same shape, but they have very different curvatures (where curva-
ture is given by the change in contour orientation per unit arc length). Typically,
use of relative curvatures or normalization by some overall object size measure-
ment is used to compare shapes in computer vision and some biological vision work
[8, 22].

Arclets offer a means of achieving scale invariance in a more natural way. Be-
cause orientation-sensitive units in early visual areas exist across a range of spatial
scales, arclets would similarly span this range. An interesting invariant characterizes
arclets made of differently sized elements that are related by the same turn angle.
As long as all elements within each arclet are of equal size, all arclets based on
the same turn angle between oriented elements represent the same scale-invariant
shape, i.e., shape pieces that differ only by a scalar. This is shown in Fig. 18.12,
in which two arclets at different scales both encode segment lengths including the
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same number of oriented units in a chain having the same turn angle. Activating a
best-fitting arclet at any scale therefore signals a unique number (based on the turn
angle) that specifies scale-invariant shape for that part of the contour. Two circles of
different sizes, for example, will have contours that best match arclets at different
scales, but both arclets will have the same turn angle.

Remarkably, this property of obtaining size invariance for free comes from the
use of oriented segments of finite lengths to encode curvature. Mathematically, a
perfect description of a curve would have infinitesimal segments; orientation is con-
stantly changing along a curve! Approximating curvature using units sensitive to
orientations that are constant along their lengths would seem a necessary but re-
grettable compromise in encoding. It is, however, this characteristic that allows a
scale-invariant curvature property to emerge automatically. Our analysis is consis-
tent with the fact that the size of oriented units in human vision co-varies with their
spatial frequency.

In Fig. 18.12, the two ellipses, having the same shape but different sizes, each
have a constant curvature segment that is shown as encoded by arclets with the
same turn angle and the same number of participating units (length). At the level of
a scale-specific representation (allowing us to see that the two ellipses are different
in size), the scale-specific arclet representation preserves the turn angle information
and the scale of the elements in the best fitting arclet. At this level, the large ellipse
is shown as having scale 3k and the smaller ellipse as having scale k. The scale
invariant representation, in which the shape of the corresponding segment of each
ellipse is encoded identically, simply drops out the scale term. Curved segments
having the same turn angle and comprised of the same number of units specify the
same perceived shape (relative curvature).

Because the arclets are encoding change information (turn angles), orientation
invariance also comes naturally with this form of representation. Orientation invari-
ance has limits in human form perception [43]. Analogous to the concurrent scale-
variant and scale-invariant encoding, absolute orientation information of segments
is likely preserved for some purposes, including form coding that has privileged
reference axes.

Garrigan & Kellman [12] discuss alternative versions of an arclet-based code that
trades off between complexity (in terms of number of parts) and fidelity (in terms
of how faithfully the code represents the contour). Most contours in the world do
not consist of constant curvature segments (as is true of the ellipse in Fig. 18.12),
but they could be approximated to any level of precision by many small constant
curvature pieces. A simpler code in terms of constant curvature segments would
have fewer segments but more distortion. It seems likely that the precision of contour
coding varies with attention and task demands.

There are alternative possibilities for early symbolic encoding of contours. Codes
that utilize more complicated primitives, e.g., any spline fitting model, will outper-
form the arclet-based approach in some cases, but also have a number of shortcom-
ings when considered as a model of contour shape representation that can handle the
shape-related problems the human visual system encounters under normal viewing
conditions. Consider, e.g., recognizing that one contour segment is part of another
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contour. More simple shape primitives (like the arclets) are less sensitive to long-
range relationships along the contour, a characteristic that may be critical for match-
ing the representation of a smaller contour segment to part of the representation of
a larger contour.

The simplicity of the arclet representation is also an advantage as the problem of
shape representation is scaled up to more ecological shapes. Contour shape repre-
sentation likely precedes intermediate representations (e.g., surface shape) and the
representation of the shapes of behaviorally important objects that may have addi-
tional complexities (e.g., an animal with articulating parts). A simpler code that does
not leverage some of the more complicated, perhaps distal relationships among the
features of a contour may be more robust when these additional complexities are in-
cluded. Consider the problem of articulating parts. A shape code that represents the
bounding contour of an object with a very small set of relatively complicated con-
tour shape primitives will have little relationship to the representation of the bound-
ing contour of that same object if one part of the object unexpectedly moves. In
sum, besides the tradeoff between fidelity and complexity, there is likely a tradeoff
between efficiency and stability. The arclets are not the most efficient representa-
tion of contour shape, but they may lead to a more stable representation than more
sophisticated primitives that leverage regularities that do not persist across viewing
conditions.

18.12 Evidence for Constant Curvature Coding in Human Shape
Perception

The arclets approach to constant curvature encoding of contours offers an example
of how subsymbolic encoding might lead to more abstract shape codes. This specific
proposal of constant curvature coding is also consistent with a variety of evidence
in human vision, including results of recent research.

Pizlo, Salach-Golyska, & Rosenfeld [41] compared detection performance for a
curve formed from dots arranged in straight lines, dots arranged in circular arcs,
and dots arranged in various types of irregular paths. They found that straight lines
were easiest to detect, but that circular arcs were easier to detect than irregular paths
(provided the change in curvature along the irregular path was not too small). Pizlo,
et al. also found that circular arcs were significantly easier than all the irregular
paths they tested when the subject was given prior information about the shape of
the target. These results are consistent with the importance of constant curvature
extraction and memory in shape perception.

More recently, Achtman, Hess, & Wang [1] used a Gabor-path detection
paradigm and showed that circular paths were more easily detected than radial or
spiral paths. Similar detection threshold advantages for circles have been found
using Glass patterns [35, 45, 53]. Other evidence, however, suggests that the prim-
itives for form perception may include both circular and spiral pooling mecha-
nisms [52].
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Fig. 18.13 Stimuli in experiments on constant curvature segment coding. Shape 1 is composed of
five circular segments with differing radii. Each segment has constant curvature. Scaling horizon-
tally and vertically by the same amount preserved the constant curvature (scale B), whereas scaling
along the two dimensions by different amounts produces regions of non-constant curvature (scales
C and D). These are all “matching” shapes. Shape 2 is created by changing the curvature of one of
the circular segments of Shape 1 and is a “non-match” shape. (From P. Garrigan and P.J. Kellman,
2011, Perception, 40(11), p. 1297. Reprinted with permission)

Neurophysiological evidence also supports a special role for constant-curvature
encoding in shape perception. Single cell recordings in macaque monkeys are con-
sistent with the idea that intermediate visual areas such as V4 may be representing
object-oriented contour curvature [38–40]. These investigators suggest that repre-
sentations of overall shapes can be derived from the collective output of such cells.

In recent psychophysical work, Garrigan and Kellman [12] used open contours to
investigate the role of constant curvature in shape representations. Subjects judged
whether two sequentially presented contour segments were the same or not, allow-
ing for scale, rotation and translation transformations. The stimuli were created by
combining five circular segments of differing radii and spans (Fig. 18.13). Because
they were constructed from circles, each segment had a constant curvature. Scal-
ing the shape by an equal amount horizontally and vertically preserved the constant
curvature, while scaling by different amounts along each dimension produced non-
constant curvature segments. Non-matching shapes were created by changing the
curvature of one of the circular segments (see Shape 2, Fig. 18.13).

Subjects were reliably more accurate in matching constant curvature shapes than
non-constant curvature shapes. Even when all transformations were removed so that
the two stimuli were exactly identical, subjects were more accurate in matching con-
stant curvature shapes, when shapes had to be compared across a retention interval
of 1000 ms. Similar recognition performance was observed for both shape types,
however, when they were compared at the same size and viewpoint and the reten-
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tion interval was reduced to 500 ms. These findings are consistent with a symbolic
encoding of 2-D contour shapes into constant curvature parts when the retention in-
tervals over which shapes must be stored exceeds the duration of initial, transient,
visual representations.

These experiments and the arclets model provide a plausible proposal for the
how a location-specific, subsymbolic representation might transition to an abstract,
symbolic one. Local edge information may be integrated into a scale and rotation
invariant representation of contour curvature. They represent modest steps, as ef-
forts to understand abstraction in perceptual representations is a multifaceted, chal-
lenging, and ongoing effort. These proposals do, however, offer an existence proof
related to some of the most open-ended questions in understanding perceptual rep-
resentations: How does the visual system construct abstract, flexible, functionally
useful shape representations from the early encoding of local, literal image proper-
ties? Constant curvature representations of contours are computationally possible,
and consistent with both properties of early cortical units in vision and some results
suggesting curvature coding in visual area V4.

18.13 Connecting Contour Interpolation and Shape
Descriptions

Consistent with the complexity of problems of contour, object, and shape percep-
tion, even this short overview has covered a lot of ground. We noted the relevance of
interpolation processes to shape, in that shape descriptions typically encompass not
image fragments, but the outputs of object formation processes. We then focused on
representations of contour shape, which the visual system may obtain in symbolic
form by recoding object contours in terms of constant curvature parts. Figure 18.14
provides an example pulling together these themes, using the picture of a cow from
Fig. 18.3. The cow’s partially occluded head in the original image (Fig. 18.14A) is
shown represented as a completed, constant-curvature based shape representation
(Fig. 18.14B). Primary edges were found using a version of the Canny edge detec-
tor [7]. (This approach was used for simplicity here, although its outputs are highly
consistent with some models that utilize neutrally plausible local units to do initial
edge finding (e.g., [23]).) In Fig. 18.14B, the edges of the cow’s head are shown
after recoding as constant curvature segments, consistent with the contour curva-
ture model of Garrigan & Kellman [12]. Dotted lines indicate amodally completed
contours; these have been interpolated following the rules of contour relatability,
with the resulting interpolated contours also represented with constant curvature
parts. The interpolation model and the contour shape model are guaranteed to be
consistent, as any interpolated contour consistent with relatability can be described
uniquely as consisting of one zero curvature and one constant curvature segment
([29], cf., [51]).
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Fig. 18.14 Example of interpolation and constant curvature coding in shape perception. The
cow’s partially occluded head in the original image (A) is shown represented as a completed,
constant-curvature based shape representation (B). Primary edges were obtained from the raw im-
age using a common edge-detection operator. Edges of the cow’s head in the image on the right
have been recoded as constant curvature segments, consistent with the contour curvature model of
Garrigan & Kellman [12]. Dotted lines indicate amodally completed contours following the rules
of contour relatability, with the resulting interpolated contours also represented with constant cur-
vature parts. The cross-hatched area in the display on the right indicates an area where edges and
textures are ambiguous and do not permit clear interpolation. (See text)

This example is not meant to minimize challenging problems that remain in un-
derstanding the transition from subsymbolic to symbolic coding, even in the rela-
tively simple domain of contour perception. As we have discussed elsewhere, al-
though some extant interpolation models can use raw images as their input, they
will be improved when certain symbolic encoding is added, such as representing a
unique edge orientation at each contour junction rather than a distribution of ori-
entation activations (for discussion, see Kalar et al. [23]). Natural scenes may also
have areas for which the outputs of edge finding and/or interpolation models are
indeterminate, as in the cross-hatched area indicated in Fig. 18.14B. Sometimes
these outputs are likely consistent with some indeterminacy in actual perception,
but in other cases they likely indicate limitations of current models. Regarding the
recoding of contours into segments of constant curvature, the model of Garrigan &
Kellman [12] is a working algorithm that takes a contour specified in terms of local
orientation values and produces constant curvature segments as outputs, but no full
implementation yet exists in terms of attaining each local orientation value from the
outputs of separate, local, orientation-sensitive units at multiple scales. Moreover,
versions of the model vary in their tradeoff of fidelity (minimizing differences from
the input image, but requiring greater numbers of segments in the approximation)
and economy (accepting limits in fidelity due to some capacity or complexity limit).
We have proposed that the visual system may similarly adjust contour shape cod-
ing for greater fidelity or greater economy [12], depending on task demands and
attention, but the specifics are not known.
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18.14 Summary

Shape perception and representation pose fascinating challenges in vision science.
In this article, we have focused on perhaps the greatest theoretical chasm in under-
standing shape: the origin of abstract, symbolic representations. Perceived shape is
not a readout of image characteristics, nor is it a collection of activations of early
orientation-sensitive units. Image regions do not receive shape descriptions in hu-
man perception; rather, the shapes we record relate to objects formed by interpo-
lation processes that may connect various separated regions. Both the shapes of
interpolated contours and of real contours share representational formats that make
possible invariant shape recognition despite certain scale and orientation changes,
matching of shapes despite different constituent elements, and extraction of gist in
shape encoding, allowing detection of shape similarities. Understanding the nature
of these symbolic representations, and how they are constructed from earlier encod-
ings, is a complex task. Vision science is fortunate in having some understanding of
initial subsymbolic encoding by neural units, and having also a number of middle
or high-level vision models that begin with representations that are already abstract.
The challenge is to discover how these meet in the middle—how we attain more
global, symbolic, interpreted descriptions from local, non-symbolic encodings. For
contour and object boundary representations, extraction of constant curvature seg-
ments as basic tokens of early symbolic representations may comprise an important
step, one consistent with psychophysical and neurophysiological data, and one that
illustrates how the visual system may approach “the middle game.”
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