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Accelerating expertise: Perceptual and adaptive learning technology
in medical learning
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ABSTRACT
Rationale: Recent advances in the learning sciences offer remarkable potential for improving medical learning and perform-
ance. Difficult to teach pattern recognition skills can be systematically accelerated using techniques of perceptual learning
(PL). The effectiveness of PL interventions is amplified when they are combined with adaptive learning (AL) technology in
perceptual–adaptive learning modules (PALMs).
Innovation: Specifically, PALMs incorporate the Adaptive Response Time-based Sequencing (ARTS) system, which leverages
learner performance (accuracy and speed) in interactive learning episodes to guide the course of factual, perceptual, or pro-
cedural learning, optimize spacing, and lead learners to comprehensive mastery. Here we describe elements and scientific
foundations of PL and its embodiment in learning technology. We also consider evidence that AL systems utilizing both
accuracy and speed enhance learning efficiency and provide a unified account and potential optimization of spacing effects
in learning, as well as supporting accuracy, transfer, and fluency as goals of learning.
Results: To illustrate this process, we review some results of earlier PALMs and present new data from a PALM designed to
accelerate and improve diagnosis in electrocardiography.
Conclusions: Through relatively short training interventions, PALMs produce large and durable improvements in trainees’
abilities to accurately and fluently interpret clinical signs and tests, helping to bridge the gap between novice and
expert clinicians.

Introduction

Recent advances in the learning sciences offer profound
potential to improve medical education. In this paper, we
describe two areas of recent innovation that offer new prin-
ciples and new learning technology in medical learning.
The first, perceptual learning (PL) approaches, teach pattern
recognition, structural intuition, and fluency. The second,
adaptive learning (AL) technologies, optimize learning for
each individual, embed objective assessment throughout
learning, and implement objective mastery criteria. We also
describe recent combinations of these in perceptual–adap-
tive learning modules (PALMs), summarizing their effects in
medical learning domains and providing a detailed
example of their formulation and outcomes based on a
PALM for training interpretation of electrocardiograms.

Conceptions of learning

Underlying much of our work are changing conceptions of
what learning is. As is the case in most instructional set-
tings, medical learning is dominated by declarative know-
ledge – facts and concepts that can be verbalized, and
procedural knowledge – sets of steps that can be enacted.
These are surely important parts of learning; however, they
are neither exhaustive nor do they cover much of what a
medical student or resident needs to master in order to be
an effective practitioner. Bereiter and Scardamalia (1998)
suggested that a pervasive “folk psychology” stereotype
about what learning is affects ordinary people,

practitioners, and learning researchers alike. They called
this implicit standard view the “container” model of the
mind: Learning consists of facts, concepts, and procedures
that we place into the container (the mind), and for later
performance, we retrieve these items.

This conception is much too narrow, and what is miss-
ing relates to persistent problems, and considerable frustra-
tion, in learning and instruction. Students who have been
carefully taught and who have diligently absorbed declara-
tive and procedural inputs fail to recognize key structures
and patterns in real-world tasks, such as interpreting radio-
graphs, ECGs, cytology, and other clinical images and tests.
Trainees may know procedures but fail to understand their
conditions of application or which ones apply to new

Practice points
� Perceptual learning (PL) occurs via experience and

is fundamental to developing mastery in many
areas of medical learning.

� Adaptive Response Time-based Sequencing (ARTS)
is a novel adaptive learning approach that pro-
motes mastery of factual information, procedures,
or perceptual classifications.

� Perceptual and adaptive learning modules
(PALMs) combine ARTS and PL to greatly acceler-
ate learning by novices of complex pattern recog-
nition-based skills.
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problems or situations. And learners may understand but
process slowly, with high cognitive load, causing them to
be impaired in demanding, complex, or time-limited tasks.
In the realm of medicine, there is clearly a gap between
the foundational knowledge gained in medical school and
the ability to recognize relevant, clinical patterns during
residency and beyond.

In the literature on expertise, rather than learning, we
find important clues to what is missing. Studies of experts
in any domain reveal that they extract and incorporate
information differently from novices (Chase and Simon
1973; Kellman and Garrigan 2009). In particular, experts
selectively pick up meaningful structures and relations
while ignoring irrelevancies, and they process task-relevant
information rapidly and with low attentional load. Much of
their expertise arises from perceptual systems that have
become progressively attuned and adapted to the structure
of information in the task domain.

Perceptual learning

How do these expert abilities arise? They are products of
perceptual learning (PL). PL is broadly defined as experi-
ence-induced improvements in the extraction of informa-
tion (Gibson 1969). For example, one learns to recognize
the voices of family and friends, and distinguish among
them, based on experience rather than an analysis of the
frequency characteristics of each. In analogous fashion,
experienced physicians are able to accurately and efficiently
pick out key features of patient scripts and interpret pat-
terns in clinical test results based on experience, rather
than by recalling facts and procedures that they were ini-
tially taught as guides to making such interpretations. A
wealth of research supports the notion that, with appropri-
ate practice in any domain, the brain progressively
improves information extraction to optimize task perform-
ance in that domain (for reviews, see Gibson 1969;
Goldstone 1998; Kellman 2002; Kellman and Garrigan 2009).

PL effects improve information extraction in a variety of
ways. Kellman (2002) argued that there are two broad cate-
gories of improvements: discovery and fluency effects.
Discovery effects involve finding the information that is
relevant to a domain or classification. Fundamental among
discovery effects is selection (Gibson 1969; Petrov et al.
2005): We discover and extract the information relevant for
a task, ignoring or inhibiting information that is irrelevant.
We come to process complex relationships in the available
input to which we were initially insensitive – an improve-
ment in sensitivity in a signal detection sense. PL in the
contemporary sense involves improved use of information
available in the stimulus environment rather than changing
criterion or bias (Gibson and Gibson 1955; Kellman and
Garrigan 2009). Fluency effects involve the efficiency of
extracting discovered information – faster encoding, pickup
of larger chunks (Chase and Simon 1973; Goldstone 2000)
or more parallel processing and reduced cognitive load
(Schneider and Shiffrin 1977). Discovery and fluency may
work iteratively in that a dividend of more fluent perform-
ance is that it frees up resources for discovery of even
higher-order task-relevant information (Bryan and Harter
1899; Kellman and Garrigan 2009).

These effects are evident in experts in many areas of
medical practice. As has been documented in a number of
other domains (Kellman and Garrigan 2009), experts in
medical image interpretation locate targets much more
quickly and accurately than novices and use more efficient
search patterns (Krupinski 2010). As is typically the case, PL
is highly domain-specific (Kellman and Garrigan 2009), and
expertise in medical image interpretation in a given area is
specifically related to repeated experience with relevant
images (e.g. radiologists are not better than lay people at
detecting non-medical targets, such as finding Waldo in
“Where’s Waldo” picture books; Nodine and Krupinski
1998). Interestingly, while expert performance indicates
remarkable domain-specific changes in sensitivity to rele-
vant information, it is not reliably accompanied by con-
scious awareness of how the detection or classification is
being accomplished.

At higher levels of pattern recognition, a surgeon recog-
nizes anatomy in novel cases, distinguishes various tissues,
structures, and planes, and senses the position, progress,
and force of instruments; emergency medical doctors inter-
pret patterns on monitors in trauma care, and experienced
diagnosticians more rapidly and accurately see relations
among tests and symptoms, and combine information from
different sources to make accurate diagnoses.

Perceptual learning technology

Conventional declarative and procedural instruction does
little to advance expert pattern recognition and fluency. In
most domains, in fact, there has been a tacit assumption
that we cannot teach this kind of knowing. Among the
problems in addressing PL with conventional instructional
methods is that much of PL occurs unconsciously (c.f.
Reber 1993; Seitz and Watanabe 2003; Mettler and Kellman
2006). In accord with this assumption, radiologists, sur-
geons, and pathologists, as well as chemists, pilots, and air
traffic controllers, advance through apprenticeship: The eye
of the expert is thought to emerge from “seasoning,”
or “experience.”

PL grows from many classification episodes and feed-
back and from encountering sufficient variation within and
between categories to be learned (Kellman and Garrigan
2009). Computational models of PL stress the discovery and
selective weighting of relevant features and relations
(Petrov et al. 2005; Kellman and Garrigan 2009), a process
that often occurs gradually across many classifica-
tion episodes.

Understanding that pattern recognition learning grows
by classification events opens the possibility of systematic-
ally addressing and accelerating PL using appropriate com-
puter-based interventions. We have developed an
emerging technology of PL (Kellman and Kaiser 1994;
Kellman 2013; Kellman and Massey 2013; Mettler and
Kellman 2014), and in recent research, it has been success-
fully applied to a number of medical learning domains
(Krasne et al. 2013; Rimoin et al. 2015; Thai et al. 2015;
Romito et al. 2016; Krasne et al. under review). PL is sys-
tematically advanced by presenting learners with many
short, interactive episodes during which they encounter a
sufficient number and variety of exemplars, which they
classify into appropriate categories, to train both accurate
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generalization to new exemplars of the same category (e.g.
learning to recognize related examples despite their wide
variation in appearance) and differentiation (learning to
make fine discriminations between easily confusable cate-
gories, such as between melanomas and benign moles or
seborrheic keratoses). Items in the software are organized
into target categories (e.g. diagnostic categories, structural
identifications). Item sets are large, so that individual exem-
plars are unlikely to repeat, and learners master each learn-
ing category to proficiency, with a continuous stream of
specific feedback for both correct responses and various
error types.

Adaptive learning technology

Medical learning could be vastly improved by technology
that adapts to the needs of the individual learner. Students
have different starting points, receive instruction of varying
quality, and differ in components of instruction that they
learn well or poorly. Testing often occurs at the end, not in
the midst, of learning, and it often involves global scoring
rather than rich descriptions of what has and has not been
learned. Improved systems would use accuracy and fluency
measures to guide the spacing (how soon in a sequence a
category should be repeated) and sequencing of learning
events. Likewise, performance measures would guide the
learner to objective mastery criteria for all components of
learning tasks. These are benefits realizable from recent
innovations in AL technology.

There have been a variety of efforts in AL, and evidence
is strong that they produce robust improvements in learn-
ing (e.g. Atkinson 1972; Pavlik and Anderson 2008). Some
limitations of most approaches are as follows: (1) They use
elaborate models that require obtaining prior data from
relevant learners and subject matter to estimate parameters
(e.g. Atkinson 1972; Pavlik and Anderson 2008); (2) they are
primarily focused on accuracy data alone; and 3) they
either do not incorporate spacing effects in learning
(Atkinson 1972) or they add spacing elements in an ad hoc
manner (Pavlik and Anderson 2008).

Considerable research indicates the importance of spac-
ing in optimizing learning and retention. But what is opti-
mal spacing? Some evidence suggests that learning is best
using a fixed schedule of expanded presentation intervals
(Landauer and Bjork 1978; Storm et al. 2010). Other work
suggests equal spacing intervals produce the best retention
(Karpicke and Roediger 2007). Recent work (Mettler et al.
2016) suggests that there is no single, correct answer to
the question of what predetermined recurrence schedule
optimizes learning. The most ideal time for a memory item
or a category in perceptual classification to recur is when
the learner can still respond successfully with some effort

(Pyc and Rawson 2009; Mettler et al. 2016), but this interval
depends on current learning strength of an individual
learner for that item or category. Any predetermined sched-
ule is non-adaptive and thus is insensitive to differences
among learners, differences among items, and interactions
of the two. Further, spacing paradigms based solely on
accuracy as a measure of learning are unable to distinguish
between slower deliberative processes versus automatic
pattern recognition or rapid memory retrieval. Rapid per-
formance with low attentional load is important to compe-
tent performance in complex and/or time-critical tasks,
such as driving, surgical procedures, or decision-making in
medical emergency settings. Adding response time (RT)
provides a window into the type of processing the learner
is using and can also be used to ensure fully fluent per-
formance. Fluent mastery is realized when a learner can
respond accurately and rapidly over long delays.

Adaptive Response Time-based Sequencing (ARTS)
(Mettler et al. 2011) is a novel approach to AL that incorpo-
rates recent research findings regarding spacing and other
principles of learning and memory in a natural way and
uses both accuracy and response speed in spacing and
sequencing categories and for setting learning criteria. In
ARTS, response accuracy and the speed of (accurate)
responses (fluency) are indicators of current learning
strength and serve as inputs to a dynamic spacing algo-
rithm that uses a priority score system to automatically
space and interleave active learning categories. Each cat-
egory is assigned a priority score indicating the relative
benefit of a new exemplar of that category appearing on
the next learning trial, and all learning categories compete
simultaneously as a function of their priority score. Priority
scores for each category are updated after every trial as a
function of accuracy, response time, and trials elapsed since
the previous presentation (Mettler et al. 2011). As learning
strength for a given category increases, the ARTS algorithm
automatically generates lower priority, and longer recur-
rence intervals, as an inverse function of the log of RT.
Figure 1 illustrates how this sequencing and spacing are
determined. The left-hand image illustrates the case of an
incorrect answer, for which another exemplar of the cat-
egory will be presented soon. The middle image illustrates
the case in which an item is quickly classified into its cor-
rect category, for which there will be a long delay before
another exemplar from that category is presented. The
right-hand image illustrates the case of a correct, but slow,
classification event, for which another exemplar of the cat-
egory will be presented with an intermediate number of
intervening trials.

For category learning, learners must respond accurately
and fluently to novel exemplars of categories across delays,
indicating that they are picking up key diagnostic

Figure 1. Illustration of adaptive spacing and sequencing based on response accuracy and speed.
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information amidst irrelevant variation. These features are
fundamental aspects of our AL system that produce trans-
fer and robust learning for real-world settings.

Fluency is used both in arranging the flow of interactive
learning events and is itself a goal of learning, included in
mastery criteria. Meeting mastery criteria requires successful
responses within a designated maximum response time to
multiple successive spaced exemplars of a category. For
example, a mastery criterion for correctly recognizing a spe-
cific histopathologic process (category) might require three
consecutive, accurate identifications of exemplars of that
process with each accurate response occurring within
10 seconds (s). Published research shows that ARTS offers
clear advantages in efficiency and durability of learning in
general (Mettler et al. 2011; Mettler et al. 2016) and in PL
specifically (Mettler and Kellman 2014). The ARTS outper-
forms random presentation (Mettler and Kellman 2014) and
also outperforms a classic AL system (Atkinson 1972) in
tasks involving learning of factual items (Mettler
et al. 2011).

A feature that adds considerable power to the system is
the use of category retirement. Upon meeting mastery crite-
ria, a category is removed from the learning set, which
allows AL to focus each learner’s effort where it is needed
most, on those categories which have not yet been mas-
tered. Pyc and Rawson (2007) used the term “dropout” for
this idea and found evidence that greater learning effi-
ciency can be achieved with this feature, especially in
highly demanding learning situations. The assessment capa-
bilities guide learning to criterion and also offer rigorous,
objective bases for certification. Furthermore, the ARTS sys-
tem is easily configured to provide remarkably efficient
recurrent training. Rapid, automated assessments determine
which categories, classifications, facts, or concepts are still
well-learned and which require refreshment. For the latter,
learning is resumed and is guided to objective mas-
tery criteria.

Perceptual and adaptive learning modules
(PALMs) in medical education

The ARTS system is quite general in that it applies to fac-
tual information, procedures, or perceptual classification. Of
special interest in medical learning, however, is the combin-
ation of AL with PL interventions, since many domains of
medical practice involve complex displays (e.g. areas such
as radiology, dermatology, pathology, electrocardiography,
ultrasound, surgery), that involve extracting key features or

pattern recognition. In recent work, we have developed
and tested online PALMs in a number of challenging areas
of medical learning. These PALMs apply ARTS to perceptual
category learning, using categories relevant to interpreta-
tions of medical classifications such as clinical tests (e.g.
electrocardiograms, pathologic processes, fetal heart rate
tracings), identification of anatomical structures (e.g. in CT
images and ultrasound recordings), and characterization of
lesions (e.g. dermatology). Each category is comprised of a
large enough number of exemplars that repetition of a spe-
cific exemplar is uncommon. These PALMs have consist-
ently produced remarkable acceleration in learning, which
required relatively short interventions and was durable.
Details on several of these interventions have been pub-
lished (Krasne et al. 2013; Rimoin et al. 2015; Thai et al.
2015; Romito et al. 2016).

Integration of ARTS and PL into a PALM and the out-
comes one can observe can be best understood from a
concrete example, the ECG Morphology PALM (Krasne et al.
under review). This PALM aims to train interpretation of 15
categories (diagnoses), 12 of which are manifested as
changes in the shapes of traces within 12-lead electrocar-
diograms (acute or old/indeterminant myocardial infarc-
tions, bundle branch blocks, axis deviations, atrial
enlargements, ventricular hypertrophies), the other three
being related to heart rate (sinus bradycardia, tachycardia,
or a normal sinus rhythm). Within each category, there are
typically 30–40 ECGs (i.e. exemplars), all from different
patients but having the same diagnostic interpretation. The
PALM, itself, unfolds as a sequence of trials, each displaying
a 12-lead ECG image along with four answer choices, only
one being correct. The trainee is allowed 30 s to choose an
answer, after which feedback is given in the form of the
correct answer, a text description of the category’s key fea-
tures, and indicators of these features on the ECG tracing
itself. For correct answers, the response time is also shown.
Sequencing and spacing of exemplar presentation from
each category is determined based on the ARTS priority
system with the minimum spacing for category repetition
set to three intervening trials. The objective mastery criteria
set for retiring each category are three consecutive, accur-
ate answer choices for the category, each within a target
response time of 15 s (fluent responses). The PALM effect-
iveness and durability are assessed via a pretest, posttest,
and delayed test. Each test consists of two unique exem-
plars per category and provides no feedback or adaptive
spacing and sequencing.

54% 58%

76%
86% 85% 90%

MS3 MS4 EM
R2&3

AAccccuurraaccyy
Pre-test Post-test

(A)

30% 33%
46%

66% 68%
78%

MS3 MS4 EM
R2&3

FFllluueennccyy
Pre-test Post-test

(B)

58%

33%

67%

50%

AAccccuurraaccyy FFllluueennccyy

No previous PALM
N=143

PALM 1 yr previously
N=113

(C)

Figure 2. The ECG Morphology PALM significantly improved accuracy (A) and fluency (B) in 12-lead ECG interpretation. A pretest (black bars) taken by MS3&4
students and R2&3 emergency medicine residents shows a progression in performance with increased educational level. A posttest after ECG PALM training
(grey bars) shows all groups reaching approximately the same high level of accuracy and their fluency roughly doubling. p< 0.0001 for each pre- and posttest
comparison. Improvement persisted at least 1 year following training (C). Error bars are one standard error.
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This ECG Morphology PALM was used in training third
and fourth year medical students (MS3 and MS4), and
second and third year emergency medicine residents (R2
and R3). Figure 2 illustrates the effectiveness and durability
of the PALM, with “accuracy” reflecting the percentage of
trials correctly identified within the allotted 30-s window
per trial, and “fluency” reflecting the subset of accurate
answers made within the target response time of 15 s.
Although the medical students started at much lower levels
than the residents, they reached close to the same levels of
accuracy and fluency following PALM training. In addition,
a substantial proportion of their improvement was main-
tained over at least 1 year, and the learning was efficient;
training times averaged between 1.5 h (MS3s) and
40min (residents).

Conclusions

Incorporating approaches that enhance PL and developing
a flexible, user-centric approach to sequencing and spacing
material to be learned, based on the combination of an
individual’s accuracy and response time (fluency) are two
new approaches to enhance medical training, each based
on the knowledge gained from research in cognitive sci-
ence. Their combination in the form of PALMs, along with
the ability to set competency requirements for determining
when a learning category has been sufficiently mastered,
can provide a pathway for training each individual up to a
desired level of proficiency and can serve to maintain that
level of competency as well. Recent reports by others have
also recognized the value and potential of combining PL
and AL. Evered (in press) reviewed the basic concepts and
scientific bases of PALMs and argued that the use of PALM
technology would improve training in cytology. Following
the publication of data from tests of a PALM in transeso-
phageal echocardiography (Romito et al. 2016), an unsoli-
cited editorial in the British Journal of Anaesthesia
commented that perceptual–adaptive learning in PALMs
has “… the potential to revolutionize our traditional
approaches to learning in anesthesia” (Weller 2016). Based
on our own experiences in using PALMs to train medical
students and residents in a variety of areas ranging from
characterizing skin lesions and discriminating histopatho-
logic processes to categorizing fetal heart rate tracings,
interpreting electrocardiograms, and classifying heart func-
tions based on echocardiograms, we, too, think that these
tools can have a significant impact in medical education.
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