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Abstract 

Deep learning networks have shown impressive performance 
in object recognition. We used the classification image method 
to probe whether a deep learning model employs the same 
features as humans in perceiving real and illusory contours. We 
adopted a deep learning network, pre-trained with natural 
images, and retrained the decision layer with laboratory stimuli 
to perform shape discrimination in the “fat/thin” task. We 
tested the network with real and illusory contour stimuli 
contaminated with luminance noise. We found that deep 
networks trained on natural images can be readily adapted to 
discriminate between psychophysical stimuli with an 
extremely high degree of accuracy. However, deep learning 
networks do not appear to represent illusory contours where 
they may aid performance in the fat/thin task, a process 
automatically performed in human vision. This divergence 
indicates an important difference between the kinds of visual 
representations formed by deep networks and by humans. 

Keywords: Deep learning, contour interpolation, 
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Introduction 
Object recognition is among the most important and 
remarkable functions of biological vision. Classifying objects 
into categories allows us to interpret a visual scene and make 
inferences about objects beyond the information present in 
the retinal image. The task of categorizing objects is made 
difficult by the vast diversity of visual features among objects 
of the same category and by the variety of contexts under 
which objects are viewed. These variations include 
differences in viewing angle, distance from the observer, 
qualities of the illuminant, and possible occluders 
fragmenting the projection of the object.  

In the past decade, computational vision researchers have 
made remarkable progress in overcoming the many 
difficulties of object recognition. Most influential has been 
the application of deep convolutional neural networks 
(DCNNs) to object recognition. DCNNs built for object 
recognition are trained with millions of labeled photographs 
of objects and animals to classify an image into one of 1000 
categories. They take an image as input and perform a series 

of matrix operations and nonlinear transformations to output 
a vector of probabilities for each of their trained categories. 
Unlike traditional neural networks, DCNNs have 
convolutional layers with filters that operate on only a subset 
of contiguous image pixels at a time. The effect is that spatial 
information is preserved in the image because two pixels 
must fall into the same convolutional window in order for 
correlations between them to be considered (LeCun, Bottou, 
Bengio & Haffner 1998). DCNN architectures have won the 
ImageNet object classification competition since their first 
entrance in 2012 (Krizhevsky, Sutskever & Hinton 2012), 
now achieving accuracies even better than human recognition 
performance.  

Similarities between DCNNs and humans, both in structure 
and performance, have raised questions about the extent to 
which the computational processes taking place in deep 
networks are similar to those in human vision. One obstacle 
to answering these questions is that most research has been 
restricted to comparisons of categorization performance 
between deep networks and humans (e.g., Dubey, Peterson, 
Khosla, Yang & Ghanem 2015; Peterson, Abbott & Griffiths 
2016). This can be a useful metric, but it can also be 
misleading if humans and artificial systems reach the same 
classification decision through very different computational 
processes. For example, consider Ringach and Shapley’s 
(1996) fat and thin Kanizsa squares (Figure 1). For humans, 
discrimination of fat and thin stimuli is aided by the 
perception of illusory contours between the inducing 
elements (Gold, Murray, Bennett & Sekuler 2000). If deep 
networks were presented with similar stimuli, usual methods 
of comparison could assess discrimination between fat and 
thin stimuli, but not how this discrimination is accomplished. 
It would be impossible to know if DCNNs interpolate 
between inducing elements as humans do, or if they make 
their classification based on other information, such as the 
orientation of the black elements. In this study, we undertake 
to apply classification image techniques (Gold et al. 2000) to 
DCNNs to study the intermediate representations that drive 
their ultimate classification decisions.  

One aspect of recognition that these methods could clarify 
is recognition of partially occluded objects. DCNNs develop 
some robustness by training with many images with different 
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Figure 1. Fat and thin modified Kanizsa squares. 

viewing contexts, for example, from non-canonical viewing 
angles or with partial occlusion. When occlusion is minimal, 
network classification remains fairly good. The VGG-19 
network (Simonyan & Zisserman, 2014) correctly classifies 
Figure 2a as a lion despite the occluding cage bars. However, 
DCNN performance drops off considerably when presented 
with more significant partial occlusion. It cannot correctly 
classify Figure 2b, which is identical apart from the addition 
of four wider occluding black bars. The assigned probability 
for “lion” goes down from .777 (first choice) in Figure 2a 
to .002 (75th choice) in the occluded image. On testing sets 
with multiple occluders, mean classification accuracy is 
between 35% and 20% among top performing DCNNs, 
depending on the number of occluders (Wang et al., 2017).  

   
Figure 2. (a) Minimally occluded lion. Found online at: 

https://c1.staticflickr.com/3/2169/3527269138_36f6ce1988_
b.jpg (b) Substantially occluded lion. 

To the extent that deep networks recognize partially 
occluded objects, they could be doing so by completion of the 
object’s shape or by recognition from partial information. In 
human perception, both strategies play a role in object 
classification, but there is substantial evidence that local 
completion is the more basic and obligatory perceptual 
process (Kanizsa 1979; Carrigan, Palmer & Kellman 2016).  
For example, it is much easier for humans to classify displays 
such as those in Figure 1 as fat or thin based on completion 
between the inducers than by looking at the orientation of 
individual elements.    

 In human perception, amodal completion (behind 
occluders) depends on the same visual mechanisms that give 
rise to illusory contour perception (Kellman, Yin & Shipley, 
1998). In displays like the Kanizsa square, people see a 
subjective contour despite a total absence of luminance 
contrast between inducers. Gold, Murray, Bennett and 
Sekuler (2000) used classification image techniques to show 
that the image region between contour inducers is influential 
in subjects’ classification of a presented Kanizsa square, or a 
partly occluded square, as fat or thin, even though the signal 
was totally absent from these regions.  

Classification images are computed by first having 
observers make decisions about hundreds of images 
containing a signal (the stimulus pertinent to the perceptual 
decision) and random visual noise. The patterns of noise in 
the images are then correlated with classification decisions in 
order to determine which pixels (i.e. regions of the image) 
were important for classifying the image into one or the other 
category. This kind of analysis can give insight into where 
the behavioral receptive fields (BRFs) – areas important to 
observers’ perceptual decisions – are in the image (see 
Murray (2011) for more information).    

In the present study, we aimed to establish a method for 
conducting psychophysical experiments on DCNNs that 
would be informative not only about the network’s final 
classification decisions, but would also provide insight into 
the stimulus information influential in the network’s final 
output. First, we adapted a pre-trained deep network to new 
perceptual tasks by replacing the final layer and learning new 
weights between it and the preceding layer in order to allow 
for testing on more tightly controlled laboratory stimuli. This 
retraining only on the decision layer preserves all the learned 
features from training for object recognition, but repurposes 
the network’s representations for a different task. We then 
used classification image techniques to systematically 
examine whether deep convolutional networks are sensitive 
to illusory contours between inducing elements. If 
classification image analyses revealed that networks formed 
behavioral receptive fields between inducers, that would be 
strong evidence of similarity between humans and such 
artificial systems. On the other hand, if networks did not 
show BRFs in the interpolating region, that would be 
evidence that DCNNs are not performing object completion, 
or at least that object completion does not involve illusory 
contour interpolation as it does in humans.    

Experiment 1 
The purpose of Experiment 1 was to develop and validate a 
method of using classification images to derive behavioral 
receptive fields in deep convolutional networks. We trained 
a network to classify wire frames as fat or thin, then tested 
the network with impoverished stimuli which had added pixel 
noise (Fig. 3). We then analyzed the noise fields from the 
testing phase to determine which image regions played a role 
in the network’s classification decision. 

Method 
Training All training and testing was done using the AlexNet 
deep network model (Krizhevsky et al. 2012). We adopted a 
pre-trained network from Matconvnet (Veldadi & Lenc 2015) 
which was trained in the standard way to classify natural 
images from the ImageNet database including 1.2 million 
images and 1000 object categories. The decision layer of 
AlexNet has 1000 nodes, one for each object category. We 
replaced this layer with a single node layer for the binary 
“fat/thin” classification. The weights between the 
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penultimate, fully connected (fc8) layer and this final 
decision node layer were trained to classify wire frames as fat 
or thin, depending on the curvature of their vertical contour 
segments.  

The network was trained to make the fat/thin classification 
from 22,000 wire frame images with the size of 227x227, half 
labeled fat, and half labeled thin. The curvature of the vertical 
segments varied from extreme (curves nearly touching in the 
thin stimulus) to negligible (horizontal position of the curves’ 
midpoint only a few pixels away from the corners of the wire 
frame). The position of the wire frames in the image also 
varied, with the constraint that the whole shape must be 
visible. We added a small amount of Gaussian noise (SD of 
contrast = .16) to every pixel in the training image, as it was 
found through experimentation that this reduced decision 
bias in the training. See Figure 3 for training examples. 

 
 

 
 
Figure 3. Sample training images from the second phase of 

training in Experiment 1. The training images varied the 
curvature of the vertical segments and location. Gaussian 

pixel noise were added to training images. 

The network was trained for 20 epochs, after which it was 
tested with a validation set of an additional 2128 wire frame 
images that had been removed from the training set. The error 
rate on the validation set was .048.  

Testing After the network had been trained to classify fat and 
thin wire frames, we conducted classification image analysis 
to examine which parts of the image were relevant to the 
network’s classification decisions. To do this, we  generated 
noise fields with a standard deviation of 0.16, then took fat 
and thin wire frames of intermediate curvature as signals with 
a contrast of 0.12, and added them atop the noise field.   

In order to derive classification images, it is necessary to 
have both correct and incorrect responses for each target 
shape. To that end, we varied the contrast of the signal over 
several thousand trials and used the Palamedes toolbox (Prins 
& Kingdom, 2009) to fit a psychometric curve to the data, 
and find the contrast at which the network correctly classified 
about 75% of presented stimuli, as is standard in 
psychophysical classification image analysis (see Figure 4).  

 
Figure 4. Sample test images from Experiment 1. Test 
images have fixed curvature but with adjusted signal 

contrast to maintain the accuracy at 75%. 

We tested the network on 100,000 stimuli, recording the 
signal, the noise field, and the network response for each trial.  
Stimuli were identical in position, size and magnitude of 
curvature. The only stimulus features that changed from trial 
to trial were the convexity of curved segments 
(corresponding to “fat” or “thin” stimuli), and the randomly 
generated noise field.  

Analysis We first analyzed the behavioral receptive fields 
from Experiment 1 using classical classification image 
methods, which was used in the human study by Gold et al. 
(2000). Trials were grouped into four categories: signal 
fat/response fat (SfRf), signal thin/response fat (StRf), signal 
thin/response thin (StRt), and signal fat/response thin (SfRt). 
We calculated the mean of the noise fields for each of these 
four kinds of trials, and then found the classification image 
by computing (1), where μ is the mean of the noise field 
corresponding to each classification type.  

(1) CI = (μ.SfRf + μ.StRf ) – (μ.StRt + μ.SfRt) 
After examining the network’s results, we found that it 

made considerably more StRf  misclassifications than SfRt 
misclassifications, caused by a bias term in the decision layer. 
Because it is important to have all response types well 
represented in classification image analysis, a biased pattern 
of response could make the derived CI less interpretable. The 
bias term in the network is unaffected by the presented 
stimulus, so to reduce its effects on the resulting classification 
images, we also performed a reverse correlation analysis. 
Rather than grouping noise fields by their four possible 
response types, we correlated each pixel intensity in the noise 
fields with the activity of the network’s response nodes across 
100,000 trials. This continuous measure was simply the dot 
product of the input to second to last network layer and the 
connection weights between the last and second to last layers. 
Conceptually, this analysis is almost identical to 
classification image analysis used in psychophysics, but it 
has the advantage of not being subject to the network’s 
response bias in shape judgments.  

Results and Discussion 
 Both the traditionally calculated classification image based 
on mean noise fields and the correlation map are shown in 
Figure 5. Gaussian smoothing was applied to both images to 
aid visualization. Darker regions correspond to areas that 
influence the network towards a “fat” classification, while 
lighter regions are areas that influence the network towards 
a “thin” classification.  

The purpose of reverse noise image correlation techniques 
is to find areas that are influential to the network’s ultimate 
classification. By analyzing the noise fields in the absence 
of the stimulus signal, psychophysicists can examine how 
random variation in the presented image can influence a 
subject’s decision one way or the other. The results of 
Experiment 1 suggest that the same techniques can be 
applied to gauge deep networks to find what areas influence 
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the artificial systems’ ultimate classification decision. In the 
wire frame experiment, there is significant correlation 
between the image region where a fat or thin vertical 
segment was overlaid and the network’s final classification.  

 
Figure 5. Left: Classification image Right: Correlation map. 
The pixel contrasts in the result images reflect the degrees 
that different locations influence the classification decision. 

 These findings validate the idea that deep networks trained 
for object recognition can be trained to do other perceptual 
tasks while preserving the features learned from training on 
natural image classification. Moreover, the correlation maps 
recovered from Experiment 1 confirm that classification 
images can be recovered from deep networks and give 
important insight into which stimulus regions are influential 
in a network’s ultimate classification.  

Experiment 2 
In Experiment 2, we used reverse correlation analyses to test 
whether deep convolutional networks interpolate illusory 
contours between inducing elements. Classification image 
analysis on human perception has found that the region 
between inducers is influential in subjects’ perceptual 
decision, even when the signal is only present at the inducers’ 
locations (Gold et al. 2000). If deep networks process visual 
scenes as humans do, we would expect the same scene 
conditions that produce an illusory contour percept in humans 
to give rise to an illusory contour in the artificial system. We 
tested this by presenting to a DCNN fat and thin Kanizsa 
square stimuli with both real and illusory contours, and 
compared the classification images from the two conditions 
to see if the network, like humans, had a representation of the 
interpolating contour in the illusory condition.  

Method 
Training The first phase of training was identical to 
Experiment 1—we used AlexNet, a DCNN that had already 
been trained to classify natural images. In the second phase, 
we retrained the connection weights between the last two 
layers, this time to classify Kanizsa squares as fat or thin. The 
training set consisted of 22,000 images of sectors of circles 
that could define fat or thin shapes depending on the 
orientation of the circle inducers. In all training stimuli, a 
curved contour was drawn to connect between the corner 
inducers, so that all training was on stimuli with real contours. 
Sample training stimuli are shown in Figure 6. The stimuli 
are slightly longer vertically than horizontally. This is done 

because DCNNs have rotation invariance, so we needed there 
to be a difference between fat and thin images regardless of 
orientation. Training images varied in curvature, from one 
degree off true vertical to 44 degrees off true vertical, and in 
position in the image. 

 
Figure 6. Training images for Experiment 2. Training 
images varied in curvature of the vertical segments and 

location. Gaussian pixel noise was added to training images. 

The network was trained for 20 epochs, after which it was 
tested on 2128 images not included in training, for which it 
had an error rate of .027.  

Testing Two testing conditions were carried out using the 
same retrained DCNN. First, we tested on stimuli with real 
contours connecting between inducers. We chose fat and thin 
signals with intermediate curvature and overlaid one or the 
other atop a randomly generated Gaussian noise field 
(standard deviation 0.16). As in Experiment 1, contrast 
between the signal and background was set so that the 
network correctly classified the image with about 75% 
accuracy (see Figure 7). We then ran 100,000 trials, half of 
which used the fat signal, and half the thin signal. The only 
stimulus features that varied across trials were the orientation 
of the inducers (angled inward for “thin” stimuli and outward 
for “fat stimuli”), the convexity of the segments between 
inducers, and the randomly generated noise field. Network 
response and the noise image were recorded for each trial.   
    

 
Figure 7. Testing images for the real and illusory contour 

condition. Test images have fixed curvature, but with 
adjusted signal contrast to maintain the accuracy at 75%. 

We also tested the network on stimuli with no physical 
contour between partial circle inducers. We used inducers 
with the same orientation as in the real contour condition, and 
varied the contrast between the signal and background to find 
the 75% accuracy threshold (Figure 7, right). We tested the 
network on 100,000 illusory contour trials, recording 
network response and the noise image for each stimulus.                  

Analysis We analyzed the data by computing the 
classification image and correlation map for both conditions, 
as in Experiment 1.  
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Results and Discussion  
The correlation map for the real contour and illusory 
condition are shown in Figure 8, along with the classification 
image derived from human subjects by Gold et al. (2000). 
The classification images were also computed, but are not 
shown because they look very similar to the correlation map, 
but with slightly less contrast between behavioral receptive 
fields and the background.  

 
Figure 8 Left panel: Correlation map for the real contour 
and illusory condition from Experiment 2, respectively. 
Right panel: Classification image for the real contour 

condition and illusory contour condition (from Gold et al. 
(2000)).  

When physical contours connect between the figure’s 
inducing elements, both the orientation of the elements and 
the contours themselves appear to be influential in 
classification. These results are similar to Experiment 1, 
except that now there are two information streams that could 
lead to correct classification—orientation of inducer and 
contour curvature. 

In the inducer-only contour condition, classification can be 
done by examining the orientation of the inducing elements, 
or by the curvature of an illusory contour connecting pairs of 
inducers. The correlation map for inducer-only stimuli looks 
dramatically different from the map for stimuli with real 
contours, and from the inducer-only condition in human 
subjects. The image region where inducers are present is 
highly influential in classification, but there appears to be no 
behavioral receptive field in the area between the partial 
circle inducers. This suggests that in the absence of real 
contours between inducers, the network classifies fat and thin 
stimuli purely based on the orientation of individual inducing 
elements, without perceiving interpolated contours between 
these elements. This is true even though real contours were 
present in all training images. Such a training regimen gives 
the network the best chance of representing illusory contours 
because the network will have learned to expect diagnostic 
information to be present between inducing elements, but 
correlation analysis reveals no contribution from the 
interpolating region. This differs from the behavioral 
receptive fields observed in humans for the same task (Fig. 8 
right), which include the illusory contour region as well as 
oriented inducer region. 

General Discussion 
The purpose of this study was to develop a method for 
conducting more rigorous psychophysical tests of deep 
convolutional networks in order to probe the nature of their 

representations and computations, and to apply this method 
specifically to the question of contour interpolation.  

Experiment 1 served as a validation for our method of 
using artificial stimuli and classification image techniques for 
probing the capabilities of DCNNs. Even though humans’ 
visual systems did not evolve to process laboratory stimuli 
typically used in vision research, psychophysicists find it 
useful to simplify the visual input in an experiment in order 
to make their findings more interpretable. The same can be 
done in deep convolutional networks by replacing the 
decision layer with one more appropriate to a given 
perceptual task. One problem that comes with training 
DCNNs with millions of parameters is the risk of overfitting, 
as when a monkey is mistaken for a person due to its 
proximity to a vehicle (Wang et al., 2017). Use of laboratory 
stimuli can mitigate this issue by more tightly controlling 
what information is available to the network in classification.   

The methodology we used in our experiments also 
provides insight into how deep convolutional networks make 
their classification decisions. In Experiment 1, we knew that 
the influential region in the wire frame images should be 
along the curved vertical contours, and we were able to 
produce classification images that confirmed this expectation. 
The structural complexity of DCNNs makes it very difficult 
to track computational processes from input to output, so a 
method like reverse image correlation is a promising tool for 
learning what information deep networks are using when they 
make one classification instead of another.  

The usefulness of such a method becomes clear when we 
look at results from Experiment 2. Most research into the 
capabilities of DCNNs has been restricted to the performance 
level. In the inducer-only condition in Experiment 2, 
evaluation of the network based solely on performance would 
seem to suggest broad similarity between human and 
artificial perceptual processes. Like humans, the deep 
network was able to accurately classify oriented inducers as 
fat or thin configurations, even when there were no real 
contours connecting them. Differences between biological 
and artificial vision are only revealed when we look past the 
performance level and analyze the information that was used 
by each system in its ultimate perceptual decision.  

Evidence that deep networks do not perceive illusory 
contours could support the notion that DCNNs do not do 
completion behind occluders, but recognize partially 
occluded objects from partial information. Unlike humans, 
the presence of illusory contour inducing edges satisfying 
geometric constraints of relatability is not sufficient to induce 
contour completion (Kellman & Shipley, 1991). An 
alternative explanation is that deep networks do amodal 
completion, but not modal completion. Under this hypothesis, 
there might be some scene requirements beyond the presence 
of tangent discontinuities and relatable edges to engage 
completion processes. Our current findings cannot decide 
between these possibilities, but it must be noted that either 
hypothesis represents a divergence from human perception, 
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where modal and amodal completion appear to depend on a 
common process (Kellman, Yin & Shipley, 1998). 

One reason deep networks might not interpolate between 
relatable inducers is that they are purely feedforward systems. 
It is possible that a deep network with recurrent connections 
would be better suited to fill in spaces between tangent 
discontinuities on a backwards pass from higher level areas. 
Importantly, though, even this would constitute a difference 
between networks and humans, for whom interpolation is 
generally thought to be a feedforward process (e.g., Heitger, 
von der Heydt, Peterhans, Rosenthaler & Kubler, 1998).  

Another reason networks might not interpolate between 
inducers is that the natural images on which they are trained 
do not have occluded target objects, so completion 
capabilities may be a low priority during training. It would be 
an interesting future direction to train networks on an image 
set with more occluded objects to test if more robust training 
would result in deep networks perceiving illusory contours.  

One limitation of this study is that classification image 
techniques assume linearity in a system’s decision-making 
process, but deep convolutional networks are inherently 
nonlinear. (We thank James Elder for bringing this issue to 
our attention). This is a subject of ongoing research, but 
preliminary findings suggest that analyses that do not assume 
linearity, such as regression using the general linear model, 
produce similar results. 

Another limitation is that in Gold et al.’s (2000) study, 
exposure time for the stimuli was limited to 500 ms. It is 
possible that given unlimited time, human observers would 
make their classification based on the orientation of 
individual partial circle inducers, rather than on the features 
of the illusory contour. Since there is no way to limit 
exposure time for DCNNs, it is possible that the same regions 
are influential in humans and deep networks, given unlimited 
viewing time. We cannot rule this out, but it seems unlikely 
given the strength of the illusory contour percept. It does not 
seem probable that human observers would be more accurate 
in their “fat/thin” classifications by attending to individual 
inducer orientations, and it would certainly make the task 
more effortful and unpleasant.  

Overall, our findings suggest that although deep 
convolutional networks resemble humans on many 
performance-based measures, there is a great deal of work to 
be done to evaluate how similar their intermediate 
computations really are to human perception. In the case of 
illusory contour displays like the Kanizsa square, the 
representations of humans and deep networks appear very 
different, as DNNs do not appear to interpolate between 
tangent discontinuities in the same way human observers do.  
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