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TITLE:  What predicts successful use and completion of an adaptive mathematics software intervention? 
 
ABSTRACT 
 
This study analyzes patterns and predictors in detailed performance data collected internally by adaptive 
web-based software designed to improve middle school students’ structural understanding of and fluency 
with fractions. Our sample consists of 764 sixth graders in 29 Philadelphia public schools who 
participated in the first cohort of a larger randomized controlled trial. We use measures of active learning 
time and initial accuracy with the software to define indicators and norms that teachers can use to actively 
manage students’ use of the software. These types of norms are crucial in helping teachers implement the 
intended software intervention effectively for children, regardless of their prior knowledge or initial 
accuracy with the software. 
 

OBJECTIVES 

This paper explores patterns in usage and completion of adaptive web-based software designed to 

improve middle school students’ structural understanding of and fluency with fractions. The sample is 

drawn from the first cohort of a larger randomized control trial of a suite of interactive mathematics 

learning modules that integrate (1) principles of perceptual learning, which accelerate learners’ abilities 

to recognize and discriminate key structures and relations in complex domains, and (2) adaptive learning 

algorithms that use a constant stream of performance data, combined with principles of learning and 

memory, to improve the effectiveness and efficiency of learning by adapting to individual students as they 

work toward objective mastery criteria [1, 2]. 

This investigation analyzes patterns and predictors in detailed performance data collected internally 

by the learning software with two primary objectives: 

(1)  To better define indicators and norms that teachers can use to actively manage students’ use of 

the software.  

(2) To take a finer-grained look at the degree to which the intended intervention is being 

implemented in various classes and to devise strategies to enhance the implementation in more 

classrooms. 

Specifically, our research questions are: (1) Is active time spent using the software related to the 

probability of reaching mastery? (2) Does the association between active time using the software and the 

probability of mastery vary depending on the student’s initial accuracy using the software? (3) What are 



the features of students who out-performed or under-performed relative to their class? and (4) What are 

the features of classes who out-performed or under-performed relative to other classes?  

 

THEORETICAL FRAMEWORK 

Although the importance of pattern recognition, problem classification, and structural intuition 

has been recognized in many learning domains, including mathematics [1, 3, 4, 5, 6, 7, 8], these have 

seemed to lie beyond the scope of instruction in schools. In contrast, studies of expertise consistently 

demonstrate large changes in information extraction and processing that go beyond the acquisition of 

declarative and procedural knowledge [9, 10]. The process by which such changes in information 

extraction and fluency occur has been termed perceptual learning [11; see  12 and 13 for recent reviews], 

defined by Eleanor Gibson as  experience-induced changes in the pick-up of information [11]. Kellman 

[13] argued that perceptual learning (PL) effects fall into two categories. Discovery effects involve 

learning what features or relations are relevant to a particular concept or task. Fluency effects involve 

improvements in the speed and automaticity of extracting discovered task-relevant information.  

Kellman and Massey and their colleagues have demonstrated the effectiveness of incorporating 

principles of perceptual and adaptive learning into learning software known as perceptual learning 

modules (PLMs) [e.g. 1, , 6, 7, 8, 14] that exploit natural human abilities to extract invariant structure. 

Students engage in problems that involve direct interaction with meaningful mathematical structures, 

relations, and representations. Over the course of a PLM, students interact with a large variety of 

examples with constant feedback. The software tracks each student’s performance across a variety of 

subcategories until the student reaches specific objective mastery criteria for each type of problem. 

This paper focuses on data collected with one of these PLMs:  Slice and Clone 1, which is 

intended to develop the relationships between partitioning quantities into units and iterating units to create 

new quantities. The goal is for students to achieve a flexible, fluent understanding of fractions as 

quantities in which a partitioning unit, 1/a, is multiplicatively iterated (e.g., ¾ is 3 times ¼ unit) [15].  

Figure 1 provides a visual representation of the software. The learning set includes 11 subcategories of 



problems which vary in difficulty from relatively simple integer problems to complex problems involving 

mixed numbers and improper fractions.  

 

METHOD AND DATA 

Analytic Sample 

We recruited sixth grade teachers who taught at least two classes in the Philadelphia public 

schools to participate as part of a larger RCT. Teachers were instructed to use the software with all 

students assigned to intervention classes during scheduled math instruction time. We restricted the 

analytic sample to students who completed more than 10 problems because some students had insufficient 

time with the module due to poor attendance, mobility in and out of classrooms, and special needs. This 

restriction resulted in our dropping 57 students from the analysis. The total remaining sample consisted of 

764 students in 30 classrooms and 29 schools. 

Data Collection 

As the students used the web-based software, time-stamped data were automatically collected 

on a problem-by-problem basis, including what problems each student completed, whether they were 

correct or incorrect on each, and their current status with respect to meeting mastery criteria for 

categories in the learning set.  

Measures 

Our dependent variable is a binary indicator of whether students mastered at least 10 out of 11 

categories. To master each learning category, students had to complete at least 4 out of the last 5 

presentations of that problem type correctly. Approximately 57% of students (433/764) reached mastery. 

Figure 2 displays the distribution of the percentage of the 11 learning categories the student mastered. 

We measured active time using the software with a measure of the number of problems the 

student completed. To make this measure more interpretable, we center this variable around the grand 

mean of total number of problems completed by students in regression models.  Initial accuracy is an 

ordinal variable representing quartiles of the distribution of average accuracy on the first two problems 



for each of the 11 learning categories. Problems for each of the 11 learning categories were interspersed, 

so this accuracy measure represents whether students got questions seen close to the beginning of their 

software use correct.  

Analysis 

The analytic approach has three parts. First, we examined the relationship between number of 

problems completed and mastery at the student and classroom levels descriptively. Second, we fit a 

logistic regression model:  

 

ln  (
𝑝!

1 − 𝑝𝑖
  ) = 𝛼 +   𝛽! 𝐴𝑐𝑡𝑖𝑣𝑒  𝑇𝑖𝑚𝑒   + 𝛽!   𝐴𝑐𝑡𝑖𝑣𝑒  𝑇𝑖𝑚𝑒  𝑆𝑞𝑢𝑎𝑟𝑒𝑑 + 𝛽!   𝐼𝑛𝑡𝑖𝑎𝑙  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

+ 𝛽! 𝐴𝑐𝑡𝑖𝑣𝑒  𝑇𝑖𝑚𝑒  𝑋  𝐼𝑛𝑖𝑡𝑖𝑎𝑙  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑢! 

 

to predict the probability of achieving mastery as a function of the active time the student spent engaged 

with the software (measured as the deviation from the grand mean number of problems completed in the 

sample), active time squared, initial accuracy (measured by the quartile of initial accuracy) and an 

interaction between active time and the quartile of initial accuracy.  We corrected for the clustering of the 

standard errors within classrooms in these models. 

Third, we examined factors related to the underperformance or over-performance of students and 

classes, including the initial accuracy and total number of completed problems of these students and 

whether the class consisted of individuals with lower initial accuracy or whether the class spent more time 

engaged in use of the software than average.  

 

RESULTS 

Describing the Relationship Between Mastery and Active Time Using the Module 

The total number of problems completed is related to mastery both at the individual and class 

level. Figure 3 shows the distribution of completed problems by percent mastery for students. The graph 

has a horizontal reference line at 155, which is the grand mean number of problems completed. Students 



with lower mastery levels completed fewer problems, as shown by the lower medians for students at 0-

36% mastery relative to the medians of students at 55% mastery and higher. The outliers in the top right 

quadrant of the graph achieved mastery but did so only after completing twice the mean number of 

problems. Figure 4 shows how the proportion of the class that reached mastery is related to the total 

number of problems the class completed on average. Classes with lower than average completion of 

problems also had a lower proportion of students reach mastery and classes with higher than average 

completion had a higher proportion of students reach mastery.  

Predicted Probability of Reaching Mastery 

The predicted probability of mastery increased with the number of completed problems but 

differently depending on initial accuracy (see Figure 5). Students with the highest initial accuracy had 

high predicted probabilities of mastery and required fewer problems to reach mastery.  These students 

likely had prior knowledge of the math and were able to skip over the discovery phase and instead engage 

in building fluency. By contrast, students with the lowest accuracy still had a low predicted probability of 

mastery, even after they had completed double the average number of problems completed by all 

students. These students were likely stuck in the discovery phase and never reached fluency. 

Understanding Factors Related to Mastery for Students Who Out-Performed and Under-Performed 

  Mastery was highly dependent on initial accuracy (see Figure 6). Even net of initial accuracy, 

however, the number of problems completed was significantly associated with the predicted probability of 

mastery. Among students with low initial accuracy who reached mastery (N=38), the average number of 

problems completed was 295 but some students required as many as 627 problems to reach mastery. 

Students with high initial accuracy on average only took 106 problems. (See Figure 7).   

  The number of problems completed was related to classroom level factors. Some classes had 

insufficient practice, as gauged by the number of problems they did relative to other classes. In these 

classes, it was unlikely that students with low initial accuracy could meet mastery. Figure 8 shows the 

students who were outliers in terms of initial accuracy and mastery. Students who reached mastery despite 

having the lowest initial accuracy are represented by red dots (N=38) while students who failed to reach 



mastery despite being in the highest initial accuracy quartile are represented by blue dots (N=27). There 

are two interesting patterns on this figure. First, almost all of the blue dots fall below the grand mean and 

their class mean in terms of the number of problems completed. These are students who likely would have 

reached mastery with more practice but were in classes where conditions were insufficient for successful 

completion of the intervention. Second, several red dots fall below the line. These dots are the students 

nested in classes where the average number of problems completed was higher than the grand mean 

number of problems completed.  Indeed, Figure 9 supports the inference that students with low initial 

accuracy are unlikely to reach mastery unless given above average practice. Figure 9 shows that most 

classes where students completed fewer than 150 problems on average had 0% of their students with low 

initial accuracy reach accuracy.  

 

SIGNIFICANCE  

Teachers often have little to go on in deciding how to allocate time to learning software and 

whether that time is being used effectively. These analyses allow us to identify patterns that teachers can 

use to monitor and facilitate students’ progress with PLM software, with norms for working with students 

starting at different levels. For example, analyses to date indicate that teachers with a high proportion of 

students with low initial accuracy should plan sufficient time for students to attempt over 200 problems, 

so that even their lowest performing students have the chance to master the material. Ongoing analyses 

will also flag common sticking points and patterns that indicate unproductive use so that teachers can 

intervene with strategic coaching or modeling as appropriate. 

These analyses also contribute to ongoing efforts to build more sophisticated adaptive algorithms 

that model students’ learning in real-time and adapt in more dynamic ways. Ideally, more powerfully 

adaptive software can manage some aspects of learning that are challenging for students to monitor for 

themselves and for teachers to track for large numbers of students simultaneously. 

 



More generally, this approach provides a model for developing more sophisticated measures of the 

quality and sufficiency of use of learning software that go beyond time spent in front of a screen, both in 

classroom use and in efficacy research. It has generally been difficult to find effects of learning software 

in large efficacy trials [16, 17, 18], but questions about whether various forms of educational technology 

“work” are just beginning to move into the more nuanced territory of investigating what, how, why, 

when, for whom, and under what circumstances. These analyses are intended to advance that effort. 
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1 
Figure	
  1:	
  	
  The	
  Slice	
  and	
  Clone	
  1	
  software	
  environment	
  makes	
  the	
  structure	
  and	
  relations	
  underlying	
  fraction	
  concepts	
  
tangible	
  to	
  learners	
  by	
  providing	
  them	
  with	
  interactive	
  on-­‐screen	
  tools	
  that	
  they	
  can	
  manipulate.	
  The	
  students’	
  task	
  is	
  to	
  
start	
  with	
  a	
  given	
  quantity	
  and	
  use	
  the	
  slicing	
  and	
  cloning	
  tools	
  to	
  create	
  a	
  new	
  quantity.	
  As	
  shown	
  in	
  the	
  top	
  panel,	
  
students	
  operate	
  a	
  “slicer”	
  tool	
  (in	
  the	
  upper	
  left)	
  to	
  cut	
  a	
  continuous	
  extent	
  into	
  a	
  desired	
  number	
  of	
  pieces,	
  thus	
  
creating	
  a	
  base	
  unit.	
  As	
  shown	
  in	
  the	
  bottom	
  panel,	
  when	
  they	
  have	
  created	
  a	
  successful	
  unit,	
  it	
  drops	
  down	
  into	
  
“cloner”	
  tool	
  (bottom	
  left)	
  that	
  will	
  iterate	
  that	
  unit	
  a	
  desired	
  number	
  of	
  times	
  and	
  output	
  the	
  result.	
  While	
  these	
  
screenshots	
  are	
  static,	
  the	
  actual	
  PLM	
  is	
  fully	
  interactive	
  with	
  customized	
  animated	
  feedback	
  at	
  every	
  step.	
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Figure 3: Distribution of Completed Problems by Percent Mastery at Student Level
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