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Abstract 

Research has shown that estimation of correlation from 
scatter plots is done poorly by both novices and experts. We 
tested whether proficiency in correlation estimation could be 
improved by perceptual learning interventions, in the form of 
perceptual-adaptive learning modules (PALMs). We also 
tested learning effects of alternative category structures in 
perceptual learning. We organized the same set of 252 scatter 
plot displays either into a PALM that implemented spacing in 
learning by shape categories or one in which the categories 
were ranges of correlation strength. Both PALMs produced 
markedly reduced errors, and both led trained participants to 
classify near transfer items as accurately as trained items. 
Differences in category organization produced modest effects 
on learning; there was some indication of more consistent 
reduction of absolute error when learning categories were 
organized by shape, whereas average bias of judgments was 
best reduced by categories organized by different numerical 
ranges of correlation. 

Keywords: perceptual learning; category learning; 
correlation estimation; scatter plots 

Introduction 
The need to process patterns and relationships in data has 

never been more prominent than it is today across many 
aspects of work, citizenship, and daily living. There is 
growing interest in promoting data literacy, but we are only 
beginning to understand some of the learning challenges 
that are involved in doing so. Correlation is one of the most 
fundamental data relations used across a great variety of 
contexts, but estimation of correlation from scatterplots, 
which is how correlations are typically represented, is 
generally poor and prone to systematic errors. 

A chronic problem is observers' tendency to 
underestimate (e.g., Lauer & Post, 1989; Meyer & Shinar, 
1992; Strahan & Hansen, 1978) rather than overestimate 
(Meyer, Taieh, & Flascher, 1997). Statistically sophisticated 
observers are no better at estimating correlation than 
novices, though they do give higher estimates (Meyer & 
Shinar, 1992). Research on perception and estimation of 
correlations from scatter plots suggests the influence of a 
variety of visual features. People tend to give greater 
correlation estimates when a scatter plot has a greater 
density of point clouds, even when the points are the same 
between graphs and only the scale ranges were manipulated 
(Boynton, 2000). They also tend to give greater correlation 
estimates to scatter plots with steeper slopes (Bobko & 
Karen, 1979). Outliers, heteroscedasticity, and restriction of 

range also affect people’s estimations (Bobko & Karen, 
1979; Lauer & Post, 1989). 

Problems interpreting scatter plots led Doherty and 
Anderson (2009) to argue for standardizing the graphical 
features (e.g., axes, labels) of scatter plots in the field of 
psychology. Standardization of scatter plots, however, does 
not solve the problem of inaccurate estimation of 
correlation. In fact, when people see only standardized 
scatter plots, there is little opportunity to learn to distinguish 
relevant and irrelevant features; moreover, lack of exposure 
to non-standardized scatter plots may intensify observers’ 
perceptual biases. 

Perceptual learning – experience-induced changes in the 
extraction of information – is fundamental to this kind of 
learning challenge (Gibson, 1969; Kellman & Massey, 
2013). Research shows that perceptual learning (PL) can be 
accelerated by interventions involving many short 
classification episodes that expose the learner to variation 
within and between learning categories. As the underlying 
properties (e.g., features, relations) that drive classifications 
are discovered, perceptual processes come to extract the 
relevant features preferentially while other irrelevant 
information may be inhibited. The preferentially selected 
information comes to be picked up with lower effort or load 
and ultimately automatically (Kellman, 2002).  

The embodiment of perceptual learning techniques in 
learning technology can be markedly enhanced by 
combination with particular adaptive learning procedures in 
Perceptual Adaptive Learning Modules (PALMs; Kellman, 
Massey & Son, 2010; Thai, Krasne & Kellman, 2015). 
PALMs systematically put learners through series of 
classification trials, each dedicated to a particular perceptual 
classification, which we call a learning category. These 
learning categories are spaced and interleaved adaptively 
using the ARTS (Adaptive Response-Time-based 
Scheduling) algorithm (Mettler & Kellman, 2014; Mettler, 
Massey, & Kellman, 2016), which uses the learner’s 
accuracy and response time on items within a learning 
category to assess learning strength and determine the 
learning category’s sequencing priority. Remarkably, the 
same adaptive learning concepts tend to optimize spacing in 
both factual and perceptual classification domains (Mettler, 
Massey & Kellman, 2016), a fact likely explained by a 
general principle – the “successful effort hypothesis” – that 
applies across learning domains. The key idea is that the 
best time for another learning trial for a given category in 
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Figure 1. Shapes of scatter plots – manipulated independent from correlation strength. Examples were randomly selected and 
have different correlations. Normal was a linear function with normally distributed errors. Diamond was a cluster of dots with 
its greatest dot density in the middle and least on both ends. Outlier left corner was the normal shape but with outliers in the 
left corner, as is outlier right corner but with outliers in the right corner.  X bell curve was a cluster of dots with its greatest 
density located from the x-axis to center and then tapering off. Y bell curve was the same but on the y-axis. Fan was a 
triangular shape with the range of y-values increasing as x increases. 3 clusters was three diamond shaped clusters. 
 
PL is the longest interval at which the learner can still 
respond correctly (Mettler, Massey & Kellman, 2016).  
  An unsolved problem of applying perceptual-adaptive 
learning to category learning is how to determine learning 
categories. This has usually been done intuitively, where 
categories are defined such that practice on some instances 
is likely to advance learning to extract relevant structure in 
other instances in that category. In some domains, such as 
diagnostic categories in electrocardiography (Thai, Krasne 
& Kellman, 2015), the relevant categories are fairly 
obvious. In other domains, this is not the case. Here we 
investigate the domain of correlation estimation, in which 
there are no obvious natural categories, and we test two 
different schemes of organizing categories spanning the 
same set of learning instances. We developed two PALMs 
with learning categories that organized scatter plots based 
on overall shape or strength of correlation and manipulated 
within-category and between-category similarities. The 
PALMs shared the same scatter plots.   

Learning categories in the Shape PALM were organized 
by surface pattern – the shape of the scatter plot. Therefore, 
they looked like “naturally occurring” categories (greater 
perceptual similarity within categories than between 
categories), but all learning categories spanned the full 
correlation range (0 – 1). Thus, there was a large range of 
correlations within categories that was similar between 
categories. The learning categories in the Correlation 
Strength PALM were different correlation ranges; within 
each category, instances could appear with various shapes, 
and the range of shapes was the same between categories. 

The two PALMs provide different learning experiences. 
Given an incorrect item, the Shape Category PALM would 
set a higher priority for presenting another scatter plot from 
the same shape category, while the Correlation Strength 
PALM would prioritize another scatter plot with the same 
correlation range. As a result, participants in the Correlation 
Strength condition might reach mastery of a learning 

category without seeing instances of that category in every 
possible shape. Participants in the Shape Category condition 
would continue getting instances of any given learning 
category until mastery but would not be guaranteed to see 
all ranges of correlation.  

We hypothesized that if one way of organizing learning 
categories was more compatible with commonalities of 
perceived structure, that condition might show better 
learning. 

Methods 

Participants 
103 undergraduates from the University of California, Los 
Angeles participated for course credit. Four participants 
were excluded for not completing the experiment. 

Materials 
We created seven different shapes of scatter plots, inspired 
by the visual features (e.g., dot density, outliers) that had an 
influence on correlation estimation in the literature (see 
Figure 1). The correlation range: 0 – 1 was divided into 
seven bins (0 – 0.14, 0.15, - 0.28, 0.29 - 0.42, 0.43 – 0.56, 
0.57 – 0.70, 0.71 – 0.84, and 0.85 – 0.99). Both PALMs had 
the same 49 subcategories (from all 7 shapes x 7 correlation 
range combinations), but subcategories were either arranged 
into categories based on shape or correlation range. In order 
to have transfer items at posttest, one correlation range (e.g., 
0 - 0.14) was withheld from training for each shape 
category, with no correlation range omitted more than once 
across the seven shape categories, and vice versa. The same 
subcategories were omitted from training for both PALMs. 

PALM Parameters Each category was introduced with an 
initial passive trial, a scatter plot displayed with the 
numerical correlation shown. Each passive trial “unlocked” 
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the learning category and initiated active trials, where 
participants gave a response and received trial-by-trial 
feedback, for that learning category. In other words, the 
beginning of training was a combination of passive and 
active trials until all learning categories were introduced, 
then trials were only active. If a response was not given 
within 20 seconds, the trial timed out and the numerical 
correlation was presented. After every 25 trials (1 block) 
participants were shown their average accuracy and 
response time for previous block(s). Participants’ correlation 
estimations were considered correct if they were ±.07 of the 
actual correlations – chosen to be half the size of a bin 
(~0.14). Categories were adaptively sequenced using the 
ARTS sequencing algorithm (see Mettler & Kellman, 
2014), which sets priorities for categories reappearing based 
on participants’ accuracy and response time on items in 
those categories. The minimum number of trials in between 
items from the same category, or enforced delay, was set to 
two trials. The enforced delay parameter in ARTS precludes 
reappearance of the same category while recent feedback 
still persists in working memory. Participants “retired” a 
learning category when they met mastery criteria consisting 
of 4 correct responses out of the last 5 trials of a category, 
with RTs ≤ 5 seconds. Training continued until participants 
graduated from all categories.  

Scatter Plots Six unique scatter plots were created for each 
subcategory used in training (total of 252). The number of 
data points (100) and the scale of the scatter plot (0 – 100 
for x- and y-axes) were kept constant for all scatter plots 
while slope and intercepts varied. Slope was not correlated 
with correlation, r = -0.17, p = 0.60. Because scatter plots 
look very similar at very low correlation values, scatter plots 
were considered to have different shapes if they looked 
distinct at the 0.5 correlation level. Great care was made to 
ensure equal representation of and no gaps in correlations 
(i.e., 0.01, 0.02, 0.03, and so on through 0.99 appear at least 
once in the training set).  Variance in x and y values was 
determined by randomly sampling from a normal 
distribution with varying means and standard deviations.  

Assessments Pretest and posttest items were identical but 
appeared in different random orders. There were four types 
of items: 1) training set: 7 scatter plots drawn from the 
training set to represent each feature; 2) near transfer: 7 
scatter plots from each of the seven subcategories omitted 
from training, 3) far transfer: 7 scatter plots with a novel 
shape representing each correlation range; 4) negative: 4 
negative correlation scatter plots spanning -1 to 0. Far 
transfer was considered transfer of correlation estimation 
skill to a novel shape that is still within the correlation range 
trained on. The novel shape was selected to have similar 
visual features (i.e., dot densities) to trained shapes but with 
a dot distribution not seen in training (i.e., three distinct dot 
clusters). Negative items were used to test for remote 
transfer, as shapes and absolute value of correlation range 
were the same but the data had a negative trend.  

Procedure 
At the beginning of the PALM, participants were given the 
definition of correlation and a scatter plot example of a 
positive, a negative, and no correlation, without actual 
correlations labeled. They were informed that all scatter 
plots seen in the experiment would have the same number of 
data points and the same scaled axes. Participants were 
asked to give their correlation estimates to the second 
decimal place and told that their progress through the 
PALM depended on their speed and accuracy. Before the 
pretest, participants were informed that scatter plots 
presented during assessments could have negative or 
positive correlations. Prior to starting training, participants 
were reminded that scatter plots during training would only 
have positive correlations. After training, participants 
completed an immediate posttest and a survey. Participants 
were asked to report demographics (age, gender), exposure 
to statistics (number of courses and average grades), 
familiarity with the term correlation (heard of it, can define, 
can interpret, know formula) and strategy for estimating 
correlation. They also rated their level of frustration, 
attention, and effort on a Likert-scale from 0 to 5. 

Dependent Measures 
Performance was measured in several ways. The absolute 
deviation measure reflected the absolute value of the 
difference between the participants’ estimate and the actual 
correlation. We defined mean error as average signed 
deviation across responses (participant’s estimate minus 
actual correlation). Negative values of mean error 
represented underestimating and positive values 
overestimating. We defined a binned accuracy measure 
such that an estimate was scored as correct if it fell within 
±0.07 of the actual correlation. Because participants learned 
to mastery criteria, the amount of time spent and number of 
trials completed during training varied across participants. 
To account for this, we calculated learning efficiency scores 
by dividing accuracy gain (posttest minus pretest) by 
minutes or trials.  

Results 
The primary results of this study are shown in Figure 2. The 
left panel shows the mean absolute deviation of correlation 
estimates at pretest and posttest, for both training set items 
and near transfer items. Both groups showed substantial 
learning. There were no differences on efficiency measures. 
There is some indication that the Shape Category condition 
showed more consistent learning for near transfer items. 
The right panel shows mean (signed) error for estimates, 
across conditions and tests. Both groups improved from 
pretest to posttest, with the Correlation Strength condition 
ending up, as a group, with mean posttest estimates not 
much different from zero. These observations were 
confirmed by the analyses, described further below. 
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Figure 2. (Left) Improvements in mean absolute deviation on training set and near transfer items from pretest to posttest. 
(Right) Improvements in mean error on training set and near transfer items from pretest to posttest. Error bars represent +/- 
1 standard error.  
 

Accuracy Measures 
Absolute deviation. We conducted separate one-way 
ANCOVAs on absolute deviation for each of the transfer 
measures, with the pretest absolute deviation for the 
corresponding transfer measure as a covariate. Posttest 
scores for the Shape Category condition had a lower 
absolute deviation for the near transfer items (M = .12, SD 
= .05) than the Correlation Strength condition (M = .14, SD 
= .06), F(1,96) = 5.51, p = .021, ηp

2 = .05. There were no 
reliable differences for training set items or far transfer 
items. For negative items, there were no positive learning 
effects at all; both conditions showed larger absolute 
deviation scores at posttest than at pretest. There was a 
marginal tendency for greater increases in deviation in the 
Shape Category condition, F(1,96) = 2.88, p =.093, ηp

2 

= .03. We suspected that some subjects may have only 
assessed the strength of correlation, which in the absence of 
the negative sign, would produce even worse deviation 
scores than pretest. We calculated the absolute deviation 
from the magnitude of the participants’ responses and of the 
correct correlations, and ran a 2 condition x 2 assessments 
(pretest, posttest) repeated measures ANOVA to investigate 
this possibility. Participants did in fact improve their 
estimates of strength of correlation, F(1, 97) = 44.80, p 
< .001, but there was no difference between conditions, F(1, 
97) = 0.418, p = .52.  
 An important feature of these results is that near transfer 
items were generally answered as accurately as training set 
items. This result indicates perceptual learning of structural 
characteristics rather than memorization of instances. There 
was some suggestion of more consistent improvement by 
the Shape Category condition across training set items and 
near transfer items. An ANOVA using condition, test 
phase, and item type showed a marginally reliable 3-way 
interaction, F(1,97) = 3.72, p = .057,  ηp

2 = .04. 

Mean Error. Absolute deviations sum the absolute values 
of error (unsigned error) for participant responses. We label 
mean error as the average signed deviation across 

responses. We conducted separate ANCOVAs on mean 
error for each of the transfer measures, with the pretest 
mean error for the corresponding transfer measure as a 
covariate. Positive mean errors reflect overestimating and 
negative mean errors reflect underestimating. For the 
training set items, the Shape Category condition had a 
positive mean error (M = .03, SD = .08) while the 
Correlation Strength condition had a negative mean error 
(M = -.01, SD = .09), F(1, 96) = 4.93, p = .03, ηp

2 = .05. 
This pattern also held for the near transfer items: the Shape 
Category condition had a positive mean error (M = .02, SD 
= .07) while the Correlation Strength condition had a 
negative mean error (M = -.02, SD = .08), F(1,96), p =.008, 
ηp

2 = .07. There was no reliable effect of condition for far 
transfer items. 
  The differences in mean error may indicate different biases 
across conditions. To assess potential differences in error, 
we tested all of the pretest and posttest data points for 
training set items and near transfer items against the 
hypothesis of zero error, using one-sample t tests. Both 
conditions showed mean error reliably greater than 0 at 
pretest, for both training set and near transfer items. 
Posttest results suggested greater improvements in accuracy 
in the Correlation Strength condition than in the Shape 
Category condition. The Shape Category condition differed 
reliably from zero error at posttest for training set items 
t(46) = 2.17, p = .04) and for near transfer items  (t(46) = 
2.31, p =.03). For the Correlation Strength condition, there 
was no reliable difference from the hypothesis of zero error, 
either for training set items (t(51) =  -.97, p =.34) or for 
near transfer items  (t(51) = -1.49, p = .14). In other words, 
in the Correlation Strength condition, participants moved 
from underestimating to unbiased estimates, while those in 
the Shape Category condition shifted from underestimating 
to overestimating.   

Accuracy Gain. We defined a separate binned accuracy 
measure such that an estimate was scored as correct if it fell 
with ±.07 of the actual correlation. We conducted separate 
ANCOVAs on accuracy gain (posttest minus pretest) for 
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each of the four transfer measures, with the pretest accuracy 
for the corresponding transfer measure as a covariate. 
Accuracy improvements were modest. Both conditions 
improved their accuracy on training set items (M = .13, SD 
=.19) and on near transfer items (M = .15, SD = .24) and 
did not improve their accuracy on far transfer items (M 
= .00, SD = .16) or negative items (M = .01, SD = .22), 
p’s > .05.  

Usability and Subjective Experience  
The PALMs were very similar in length and subjective 
experiences. There were no differences between conditions 
in the number of trials completed during training or time to 
reach learning criterion. Perceiving correlations is difficult. 
The PALMs were equally frustrating for participants (M = 
4.06, SD = 1.07), but participants paid attention just the 
same (M = 3.48, SD = 0.92), n.s. Participants in the 
Correlation Strength condition (M = 3.67, SD = 0.92) 
reported slightly more effort than those in the Shape 
Category condition (M = 3.34, SD = 0.92), t(97) = -1.80,  p 
= 0.08, d = 0.36.   

Discussion 
Learning technologies designed to improve learning in 

most domains employ a category structure that mirrors 
natural categories, such as species for classifying butterflies, 
diagnoses for reading medical scans, or problem types for 
practicing mathematics. Sequencing items in this way is 
intuitive. However, we asked whether alternative category 
structures could benefit learning and perhaps even yield 
different learning outcomes. People estimate correlations 
from scatter plots poorly, even observers seasoned in 
statistics. We chose correlation estimation to see if we could 
improve this skill using perceptual learning principles and to 
see whether different category structures matter. 

Some research on correlation estimation suggests that 
various visual features influence estimation, so for one 
category structure, we grouped scatter plots by their shapes, 
whereas we used correlation ranges as an alternative 
grouping.  Both PALMs utilized the same learning items. 
We predicted that perceptual learning interventions that 
exposed observers to variation within and between learning 
categories, involve active classification episodes, and 
provide immediate feedback would increase correlation 
estimation proficiency in both PALMs but that the degree 
and nature of improvement might differ between them. We 
hypothesized that the Shape PALM would develop a 
correlation estimation skill that is more robust with respect 
to variations in surface features in scatter plots. Another 
possibility was that participants in the Correlation Strength 
condition would get an advantage in near transfer (where 
some range of correlation had been withheld from the 
training set), due to getting systematic practice along the 
dimension of degree of correlation. 

We found that both PALMs improved proficiency in 
correlation estimation - a notable result, as even years of 
interaction with scatter plots do little to develop experts’ 

ability to extract invariant structure in this domain. 
Participants did, indeed, train on a substantial number of 
unique scatter plots (252) and complete many trials (~500 
on average) during a condensed time period – a learning 
experience that is unusual. Although statisticians interact 
with scatter plots often, they certainly would rarely see this 
many in succession and certainly not in an order that 
benefits learning.  

Participants also estimated near transfer items as 
accurately as training set items. Recall that participants 
never saw scatter plots with these combinations of shape 
and correlation range in training. Equivalent performance on 
these items is consistent with perceptual learning of 
structural characteristics as opposed to memorizing 
individual instances.  

Although participants in both conditions trained to 
objective learning criteria, as defined by our accuracy 
requirement of being ±.07 of the actual correlation, the two 
PALMs yielded different learning outcomes. Participants in 
the Shape Category condition were more consistent in the 
amount their estimations deviated from the actual 
correlation while participants in the Correlation Strength 
condition were less biased in their estimations. In addition, 
participants in the Shape Category condition were 
significantly closer (lower absolute deviation) to the actual 
correlation on near transfer items than those in the 
Correlation Strength condition.  

The reliable differences in bias are not large, but they may 
reflect differences in learning experiences between the two 
PALMs. Participants in the Shape Category condition, on 
average, overestimated. Because learning categories in this 
condition were not systematically organized in terms of 
degree of correlation, category sequencing based on 
performance may have been less impactful at addressing 
bias, despite accuracy feedback. For example, an error on an 
exemplar from a given shape category with a true 
correlation of .75 might have been followed up soon after by 
another example of that shape category, but the new 
instance could have a very different degree of correlation. In 
contrast, in the Correlation Strength condition, an error on a 
display with correlation of .75 would be followed up within 
a couple of learning trials with another category exemplar 
with a correlation close to .75. Such effects of category 
structuring might also occur with regard to attainment of 
learning criteria. A persistent error relating to a given 
correlation range would tend to delay mastery in the 
Correlation Strength condition, leading to more learning 
trials centered on that category. A final possible contributor 
to the condition difference for bias is that overestimating 
seems to be reflective of statistical sophistication (Meyer & 
Shinar, 1992). We do not know why, but our data suggest a 
growth of skill in both conditions, whereas only in the 
Correlation Strength condition would category structure 
have tended to drive adaptive learning events that might 
tend to combat consistent overestimation, especially one 
centered in certain parts of the range of correlations. 
Perhaps some explanation along these lines explains why 
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the Correlation Strength condition showed posttest results 
for both training set items and near transfer items that did 
not differ reliably from zero error.  

Conversely, participants in the Shape Category condition 
did outperform those in the Correlation Strength condition 
on near transfer items, in terms of absolute deviation. Their 
improvements on near transfer items were consistent with 
the amount they improved on training set items. This 
difference may speak to a superior pick up of structure and 
decreased attention to surface features as a result of training, 
allowing these participants to estimate correlation across a 
broader range of shapes.  

Participants were not able to transfer their correlation 
estimation skill to a novel shape, as they performed just as 
poorly on far transfer items at posttest as pretest. We 
suspect that our far transfer items were so difficult that 
transfer would have been close to impossible. Although 
participants had experienced scatter plots with dot densities 
during training, they had only one cluster, not three clusters 
as in the far transfer items. Performance on negative items 
got worse after training, which can be explained by the 
absence of the negative sign in their estimations. When only 
strength of correlation was assessed, participants did in fact 
improve from pretest to posttest. Participants may have 
omitted the negative sign because they became less attuned 
to slope, as slope varied throughout training and did not 
correlate with correlations of scatterplots, so noticing this 
feature was useless and therefore, disregarded. Negative, 
shallow slopes would be harder to detect at posttest, 
possibly leading participants to misclassify them as positive, 
resulting in larger deviations. The same filtering out of 
surface features that gave participants in the Shape Category 
condition an advantage on near transfer items could be a 
disadvantage when processing surface features becomes 
relevant to the task (i.e., looking at which way the points are 
pointing when slope is shallow), as in negative items.  

To our knowledge, little work has compared different 
ways of organizing learning categories in complex 
perceptual learning. The results of this study demonstrate 
that the perceptual learning intervention was successful in 
improving novices’ skill in the difficult and error-prone task 
of estimating correlations from scatter plots, and that 
variations in how the learning categories were defined and 
sequenced differentially showed some measurable effects on 
absolute accuracy and bias in estimation. Our results suggest 
that the type of learning outcome may depend on how 
learning categories are organized and should be considered 
when designing learning modules.  

The role of learning category organization deserves 
further study, especially in domains where learning 
instances may coherently be grouped in multiple ways. Such 
efforts may have both interesting theoretical import as well 
as implications for the design of learning technology in 
applied settings. 
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