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Abstract

Background: A classification image (CI) technique has shown that static luminance noise near visually completed contours
affects the discrimination of fat and thin Kanizsa shapes. These influential noise regions were proposed to reveal ‘‘behavioral
receptive fields’’ of completed contours–the same regions to which early cortical cells respond in neurophysiological studies
of contour completion. Here, we hypothesized that 1) influential noise regions correspond to the surfaces that distinguish
fat and thin shapes (hereafter, key regions); and 2) key region noise biases a ‘‘fat’’ response to the extent that its contrast
polarity (lighter or darker than background) matches the shape’s filled-in surface color.

Results: To test our hypothesis, we had observers discriminate fat and thin noise-embedded rectangles that were defined
by either illusory or luminance-defined contours (Experiment 1). Surrounding elements (‘‘inducers’’) caused the shapes to
appear either lighter or darker than the background–a process sometimes referred to as lightness induction. For both
illusory and luminance-defined rectangles, key region noise biased a fat response to the extent that its contrast polarity
(light or dark) matched the induced surface color. When lightness induction was minimized, luminance noise had no
consistent influence on shape discrimination. This pattern arose when pixels immediately adjacent to the discriminated
boundaries were excluded from the analysis (Experiment 2) and also when the noise was restricted to the key regions so
that the noise never overlapped with the physically visible edges (Experiment 3). The lightness effects did not occur in the
absence of enclosing boundaries (Experiment 4).

Conclusions: Under noisy conditions, lightness induction alters visually completed shape. Moreover, behavioral receptive
fields derived in CI studies do not correspond to contours per se but to filled-in surface regions contained by those contours.
The relevance of lightness to two-dimensional shape completion supplies a new constraint for models of object perception.
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Introduction

The neural mechanisms that implement completion include

superficial and deep layers of V2 and V1 [1]. Recent work has

suggested that the receptive fields for these cells can be revealed

behaviorally through a technique termed ‘‘classification imaging’’

[2–6]. In an influential study, observers discriminated ‘‘fat’’ and

‘‘thin’’ rectangles, the edges of which were luminance-defined

(‘‘real’’) or completed (‘‘illusory’’; see Figure 1). The rectangles

were embedded in a new luminance noise field on each trial and

correlations were calculated (across trials) between noise contrast

and observer response for each pixel in a noise field. The resulting

map of correlations–the classification image–revealed that the

noise near illusory contours correlated with response about as

much as the noise near real contours. These correlated noise

regions were thought to specify the path of completion–the same

regions to which cortical cells respond in single-unit studies [7–8].

In the current investigation, we hypothesized that influential

noise regions in the fat/thin task correspond not to contours per se,

but to surfaces that distinguish the discriminated shapes–hereafter,

the key regions, (see Figure 1B). On our account, key region noise

biases a fat response (and against a thin response) to the extent that

its achromatic color matches that of the filled-in surface. (Footnote:

Correlations between noise pixel contrast and observer response

can be stated in different, but logically equivalent, ways. A bias in

favor of a fat response is equivalent to a bias against a thin and if

lighter noise biases a fat response, then darker noise biases a thin

response. Etc.) To motivate the hypothesis, the average noise fields

(component images) for a thin and fat response are shown

separately for real and illusory shapes [9] (see Figure 1C). The

images show that the influential noise–that is, the dark and light

areas–largely occupied the key regions. This noise was on average

lighter than the background when subjects responded ‘‘fat’’, and

darker than the background when subjects responded ‘‘thin’’.
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Since the inducers (ovals) always had negative (Weber) contrast

and since a figure surface tends to be lightened in these cases [10],

we speculated that lighter key region noise biased a fat response

because it resembled the filled-in surface color. To state it more

explicitly, as the noise became lighter and therefore closer in

appearance to the surface, the key regions were assimilated into

the rest of the figure, increasing the likelihood of a fat response. As

the key region noise became darker and therefore dissimilar to the

rest of the shape, the key regions were viewed as separate from the

figure, and a thin response became more likely. Two predictions

follow. One is that the relationship between noise influence and

response should reverse if lightness induction causes shapes to

appear darker (rather than lighter) than the background, as would

happen with positive contrast inducers. In this case, darker key

region noise would be assimilated into the darkened shape,

rendering a ‘‘fat’’ response more probable. Another prediction is

that if the inducers were half dark and half light (mixed)–so that

the figure surface were neither darker nor lighter than the

background–then the color of the key region noise would become

irrelevant, in which case there would be no consistent relationship

between noise and response. Our predictions, if confirmed, would

give a new interpretation of CIs and show that the way that the

visual system delimits a shape depends on how it fills-in

achromatic surface color.

Approach

Our set-up was similar to that of Gold, Murray, Bennett, &

Sekuler (2000), except that a fat or thin rectangle became visible as

a result of eight ovals passing behind it (Figure 2A; see also [9]). A

spatiotemporal version of the fat/thin task was chosen because

interpolation may be stronger and cause a greater reliance on

filling-in regions when edge information must be combined over

time [11–12]. Spatiotemporal displays are also useful for creating

minimally lightened surfaces: In our mixed polarity condition,

dark and light ovals contributed equally to the appearance of each

inducing edge, so that there was strong contour completion

without substantive changes in surface lightness (see Methods).

Our hypothesis was tested over the course of four experiments.

In Experiment 1, ovals were either: all dark, to create a lightened

figure surface; all light, to produce a darkened figure surface; or

half dark and half light (mixed), to minimize lightness induction.

Discriminated contours were either real or illusory (see Figure 2A).

The real contours were the same contrast as the ovals, except for

the mixed condition, where they were the same contrast as the

light ovals. A Bayesian adaptive algorithm (QUEST) adjusted

signal (oval) contrast to maintain 70% accuracy [13]. CIs were

computed for each of the six conditions [4]. Two ‘‘multi-session’’

observers each performed 10000 trials per condition over the

course of several weeks; 50 additional ‘‘one-session’’ observers

each performed 200 trials/condition over the course of one hour.

The predictions, which are illustrated in Figure 2B and explained

more fully in Figure 3, are as follows: i) when inducers are dark,

key region noise pixel contrast will positively correlate with a fat

response producing light CI features; ii) when inducers are light,

key region noise will negatively correlate with a fat response

producing dark CI features; and iii) when the inducing edges are

light and dark over the course of a trial, there will be little, if any,

correlation between noise and response (producing uniform gray

CIs).

Results

CIs computed from all observers are shown in Figure 4. It can

be seen that in the absence of lightness induction, there were no

noticeable CI features and in the presence of lightness induction,

the key regions were employed in the way predicted. To quantify

lightness effects, we performed a region-of-interest (ROI) analysis

on the ‘‘raw’’ CIs (viz., those which have not undergone blurring

or any other processing.) The ROI was centered within the two

key regions and did not overlap with physically visible edges (see

Figure 5A and the Analysis section of the Methods for ROI

Figure 1. Hypothesis and motivations for the experiments. (A) When subjects discriminated noise-corrupted fat and thin rectangles, noise
near real and illusory contours correlated with response. (Modified from a figure courtesy of Jason Gold) (B) The present hypothesis is that correlated
noise pixels correspond not to contours but to the surfaces that distinguish the fat and thin shapes–the ‘‘key regions’’. (C) Component images from
Keane, Lu, and Kellman (2007) are shown for the illusory and real conditions along with superimposed fat and thin shapes. There is one component
image for the fat response and one for the thin response. Each image is the summation of the average noise fields for correct and incorrect trials. The
component images suggest that key region pixels biased a fat and thin response by being light and dark, respectively. The final CIs, which result from
a simple subtraction, reveal that noise pixel contrast within the key regions positively correlated with a fat response and negatively correlated with a
thin response (NB: Images in 1 C are of opposite polarity to Gold et al. (2000), only because in that study the subtraction sequence was reversed).
doi:10.1371/journal.pone.0062505.g001

Surfaces and Contours
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dimensions). The average CI pixel value within the ROI strongly

depended on inducer polarity for both one-session and multi-

session observers (ps,.001). This dependence was comparable for

real and illusory contours (ps..09). More specifically, for both

contour types, the average ROI value was always positive when

the inducers were dark, always negative when inducers were light,

and intermediate, otherwise.

To further confirm that dominant CI features correspond to

lightened or darkened surfaces, we compared human CIs with

those produced by an ideal observer, which discriminated on the

basis of a statistically optimal decision rule [14–15]. As expected,

influential CI pixels corresponded to the edges of the inducers in

the illusory conditions and also to the edges of the vertical contours

in the real conditions. Importantly, the contour-like CI features in

the real-mixed condition (which involved white shape contours)

were detectable for ideal but not human observers. The feature-

less human CIs cannot be ascribed to subjects neglecting the white

luminance-defined contours since the signal contrast thresholds

(the oval/contour contrast needed for 70% accuracy) were at least

as low as they were in the other real conditions and much lower

than in the illusory-mixed condition for the single session and

multi-session observers (ps,.002). In other words, even though

subjects clearly took advantage of the additional shape information

in the real-mixed condition, their CIs failed to reveal where that

information originated. These data suggest that the CI technique

can reveal contour characteristics via lightness induction, but may

be severely limited in illustrating shape boundaries when lightness

induction is absent.

Salient features also appeared outside of the key regions and these

were not specifically predicted by our hypothesis. For example, the

CIs bowed inward more in the dark than in the light contrast

polarity conditions, and features of the opposite contrast polarity

arose on the interior of the key regions for the real-light condition.

Such features were absent in the mixed polarity CIs. This suggests

that lightness induction may guide the employment of non-key

regions and, more generally, that contour-surface interactions may

be considerably more complex than previously suspected. We

briefly speculate on the usage of non-key regions in the Discussion.

To show more convincingly that filled-in surface regions alter

shape perception, a second experiment was conducted wherein the

shape differences were increased so that the key regions were twice

as large as before (see Figure 6). The same narrow ROI filter was

applied as in the first experiment, so that the analyzed pixels were

no longer immediately adjacent to the discriminated contours.

Visually meaningful CIs did not emerge because there was one-

sixth as much data as in the previous experiment. However, the

more sensitive ROI method once again showed a strong effect of

inducer polarity, F(2, 48) = 7.02, p = .002. More specifically, light

or dark key region noise pixels tended to be assimilated into the

shape when the induced surface color was light or dark,

respectively. This effect did not depend on whether the shape

was real or interpolated, F(2, 48) = 0.51, p..6. These results did

not differ appreciably with those found in Experiment 1,

F(2,146) = 1.04, p = .36, indicating that the magnitude of noise

influence does not drop off sharply with distance from the

discriminated contour.

A concern may be that the key regions were used only on trials

where the noise destroyed the physically visible contours. In these

trials, the participants might have been unable to see any shape

and would thus be forced to respond only on the basis of surface

Figure 2. Stimuli and predictions for Experiment 1. (A) On each trial, a fat or thin gray stationary rectangle became visible by occluding
horizontally translating ovals. (Dotted shapes are shown for illustration only). Ovals are shown translating to the right, but could translate in either
direction. Ovals were either all dark, all light, or half dark and half light (mixed). The top and bottom parts of the rectangles were connected by
luminance-defined (real) or completed (illusory) contours, and different parts of these contours appeared at different points in time (t1 and t2). In the
mixed polarity condition, the added real contours were light; in other cases, they were the same contrast as the surrounding ovals. Static luminance
noise is not shown above, but encompassed the entire shape and was freshly presented for each trial. (See Movies S1–S12 for dynamic versions of
stimuli). (B) Key region pixel contrast was expected to positively and negatively correlate with a fat response when inducers were dark and light,
respectively. No correlations were expected for the mixed-polarity condition. No specific predictions were made for non-key regions, which are
shown above as mean gray.
doi:10.1371/journal.pone.0062505.g002
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cues. To better test whether the key regions change shape

perception or whether they serve as a shape substitute, we ran a

third experiment in which the global noise field was replaced with

two slender noise bars centered within the two key regions (see

Figure 7A). On each trial, the bars were freshly drawn with a

single randomly chosen Weber contrast value. The bars appeared

at a fixed location–either immediately outside a thin shape or just

within a fat shape. The bars were embedded in a non-varying

patterned background so that they would appear as surface

features rather than separate objects. Upon computing CIs and

performing an ROI analysis on the noise bar regions, inducer

polarity once again was found to alter shape perception via

lightness induction, F(2,28) = 11.5, p = .0002. The ROI value was

highest when inducers were dark, lowest when inducers were light,

and intermediate otherwise (Figure 7B). The effect was strikingly

consistent: For all fifteen observers, the ROI value in the dark

polarity condition was higher than that in the light, t(14) = 5.36,

p = .0001. The outcome is especially noteworthy in that partici-

pants were repeatedly asked to ignore the noise bars throughout

each experimental session. The capacity of lightness to alter shape

perception apparently cannot be easily abolished through observer

strategy, at least not when the inducers are noise-less and high-

contrast.

In order to ensure that the foregoing effects depended on visual

completion, we conducted Experiment 4, which was otherwise the

same as Experiment 3 except that the top and bottom part of the

stimulus appeared disconnected (‘‘fragmented’’ condition; see

Figure 7A and Figure S1). The top parts of the fat/thin

fragmented shapes were trapezoidal and had the same shape as

the top parts of the fat/thin illusory shapes, respectively. The

bottom parts of the fat/thin fragmented shapes were identical to

the top parts of the fat/thin illusory shapes, respectively. The ovals

in the fragmented condition were elongated towards the fixation

point to further promote a fragmented appearance. The task in the

fragmented condition was to indicate via a button-press whether

both the top and bottom parts were fat (fuller in appearance) or

Figure 3. A graphical explanation of the predictions for the inducer types (dark, light, and mixed). The red arrows indicate the location
of the highly influential key regions.
doi:10.1371/journal.pone.0062505.g003
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Figure 4. Convolved CIs for human and ideal observers computed from 30,000 and 3,000 trials per condition, respectively. The
superimposed translucent ovals show the position of an average rectangle (neither fat nor thin). Human CIs are shown with and without
superimposed key regions (dotted red lines).
doi:10.1371/journal.pone.0062505.g004

Surfaces and Contours
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thin. Here, CI value in the ROI was independent of the inducer

polarity, F(2, 28) = 0.40, p = .67. There was no relationship

between noise contrast and observer response because the noise

never occurred within a filled-in surface. A comparison to

Experiment 3 confirmed the two-way interaction: inducer polarity

mattered only if there was an enclosed, filled-in surface,

F(2,56) = 3.51, p = .04. It can be concluded that inducer polarity

(oval color) is not enough to explain the CI outcomes from the first

three experiments; there must also be a bordered surface that

contains the spread of lightness.

Threshold data provide additional confirmation that contour

completion occurred in all three illusory conditions of Experiment

3 but not in the fragmented conditions of Experiment 4. Subjects

reached threshold accuracy (70%) with lower contrast when the

configurations were fragmented rather than illusory,

F(1,28) = 43.1, p,.000001, and this difference did not depend

on inducer polarity, F(2,56) = 0.34, p..7. In each case, the noise

bars likely disrupted visual completion, which in turn made global

shape differences harder to see. This finding is consistent with

prior studies, which suggest that distractor lines impair discrim-

ination when appearing near completed rather than fragmented

shape boundaries [16–19]. It can be concluded that contours (but

not surfaces) were filled-in regardless of polarity in our spatiotem-

poral illusory displays.

Discussion

Our results show that, under noisy viewing conditions, the

filling-in of surface color alters perceptually completed shape.

More precisely, when the key region noise and the filled-in surface

color had the same achromatic color (both light or both dark), the

key regions were incorporated into the shape and the shape

appeared thin. When the key region noise and surface were of

opposite color (one light and one dark), the key regions were

excluded from the surface, and the shape appeared fat. When the

discriminated shapes were neither darker nor lighter than the

background, the noise lost its influence. This pattern was robust. It

occurred when shape boundaries were interpolated or real, when

the signal was noisy or noise-free, and when the noise was

immediately adjacent to or further removed from the fat/thin

contours. The effects occurred at a variety of inducer contrast

levels (ranging from ,40% in Experiment 2, to ,70% in

Experiment 3), and could not be abolished by observer strategy.

To our knowledge, our experiments are the first to show that–

under noisy viewing conditions–lightness induction alters two-

dimensional shape perception.

Reinterpreting CIs and behavioral receptive fields
The present results account for certain currently unexplained

aspects of CIs. Referring back to Gold et al.’s (2000) illusory

condition, the reason why only two prominent CI stripes

Figure 5. Region of interest (ROI) analysis for the CIs of Experiment 1. (A) To quantify the effects of lightness induction on shape
discrimination, slivers of CI pixels were averaged across subjects for one-session observers and across sessions for each multi-session observer. (B)
Mean ROI values are shown for each contour type and inducer polarity. Errors depict +/2 SEM.
doi:10.1371/journal.pone.0062505.g005

Figure 6. Key region and results for Experiment 2. (A) The shape differences in this experiment were twice as large as the first experiment, but
the ROIs spanned the same narrow area. (B) Mean ROI values are shown for each condition. Errors provide +/2 SEM.
doi:10.1371/journal.pone.0062505.g006
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appeared on each side of the shape (see Figure 1A) is because

there were only two key regions on each side. The reason why

these stripes did not obviously bow inward or outward in the

illusory condition is because the key regions bowed neither

inward nor outward (though see below). Finally, the reason why

CI pixels were dark in their study is because–opposite to ours–

the first response type was thin (i.e., the subtraction sequence in

the classification image equation was reversed; personal commu-

nication with J. Gold, September 10, 2006), and noise pixel

contrast negatively correlates with (or biases) a thin response

when appearing near a lightened shape. Our explanation implies

that prominent CI features arising from a fat/thin task do not

directly reveal behavioral receptive fields of perceptually com-

pleted contours as often supposed [7–8,20]; rather, they

correspond to filled-in surface regions delimited by contours. That

is, completed (and real) contours define the regions in which

prominent CI features appear.

Implications for mechanisms and methodology
An intriguing finding was that–both in our study and in that of

Gold et al. (2000)–features of opposite polarity collected on either

side of the key regions. In Gold et al.’s illusory condition, for

example, the prominent CI features were flanked by areas slightly

lighter than the background (see Figure 1A). The flanking areas

may modulate the appearance of key regions via lightness

induction. Specifically, a key region surrounded by dark pixels

will appear lighter than usual, making a fat response more likely

for a dark inducer display. The same region surrounded by light

pixels would appear darker than usual, rendering a thin response

more likely in the same display. The opposite pattern of biases

would occur with light inducers. This explanation, while

speculative, fits with the other lightness effects documented so

far. Of course, this does not mean that key regions require the

flanking noise to exercise their influence; Experiment 3 demon-

strated that key region noise, by itself, can selectively incline a

response. But such effects do mean that the interaction between

lightness and shape perception is not limited to the key regions and

that other parts of the stimulus also play a role.

Another observation from the CIs is that the noise near

inducers appeared to be more influential than noise in between

the inducers. This finding is expected since it has been found in

other studies [2,5,9] and since physically visible edge information

must be relied upon to some extent for above-chance perfor-

mance. What makes fat/thin CIs so interesting, in our view, is

that the filling-in regions are employed at all; that they guide

shape perception despite being objectively task-irrelevant.

Our CIs also elucidate the relation between lightness induction,

modal completion (for illusory contour formation) and amodal

completion (for the representation of occluded contours). Gold

et al found pixelwise correlations along the amodally completed

edges of fat and thin shapes. Our data imply that the amodally

completed surfaces were subject to lightness induction. Moreover,

the CI features of Gold et al.’s amodal condition appeared slightly

fainter than those of their ‘‘illusory’’ condition. This could be

random variation or more likely it could mean that amodally

completed surfaces are lightened to a lesser extent than modal

surfaces. Another possibility is that–on select trials–the noise

rendered the amodal stimulus similar in appearance to the modal

stimulus, unleashing lightness induction effects that would

otherwise be contained.

While contrast polarity is known to change the grouping

strength of contour elements [10,21] and the depth stratification

and phenomenology of completed surfaces [22–23], our study is

the first to show that perceptually completed 2d shape depends on

the color of the filled-in surface, at least under noisy viewing

conditions. There are a number of models of illusory shape

perception [23–25] but none imply this sort of surface-to-shape

interaction. The present results give reason to revise the foregoing

models.

The neural mechanisms mediating surface-contour interactions

remain to be specified, but likely involve recurrent feedforward

and feedback connections between low- and higher-tier laminar

cortical areas. One possibility is that polarity-sensitive cells of V1 –

layer 3B or layer 3 [26] – represent inducing edges. This

information is pooled and passed up to the polarity-insensitive

layers 2/3 of V2 [23]. These layers, in turn, interpolate contours

via excitatory long-range horizontal connections between cells of

similar orientation tuning. Illusory contours, once formed, prompt

earlier polarity-sensitive cells to become responsive to surface

features such as achromatic color, the representation of which

depends on lightness induction. When these surface features

change, this information is passed up again and prompts the visual

Figure 7. Stimuli and results for Experiment 3 and Experiment 4. (A) Shapes appeared with slender noise bars (identified by red arrows) that
were centered within the key regions of the illusory condition. The noise bars were embedded in a fine-grained pattern shown schematically by gray
rectangles. The pattern was constant for all trials and appeared under the translating ovals. The top and bottom parts of the fragmented stimuli were
trapezoidal and appeared disconnected. (B) A CI was computed with the noise bar values for each subject and ROIs consisted of just the noise
regions. Mean ROI values are shown for each polarity condition for the illusory shape discrimination of Experiment 3 and the fragmented
discrimination of Experiment 4. Errors are +/2 SEM.
doi:10.1371/journal.pone.0062505.g007
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system to ‘‘re-draw’’ the interpolated boundary. CIs of dynamic

real and interpolated shapes provide indirect evidence for such

interactions. For example, in Keane et al., (2007) [9], when

different parts of a moving contour appeared at different points in

time and when a CI was computed for each frame of motion,

luminance noise began to influence shape perception before a

completed contour could appear (p.3470, especially frame 2 of the

illusory and real conditions), and continued to affect shape

judgment well after the contour appeared (see frame 5 of the same

page). Evidence for early and late influence of luminance noise on

illusory shape perception has also been adduced elsewhere [5].

Such results imply that there exists a continual dialogue between

surface and contour forming mechanisms, where the representa-

tions formed by one kind of mechanism inform and update the

representations formed by the other.

The present findings recommend ways to extend the CI

methodology. First, and perhaps most obviously, fat/thin CIs

can objectively measure the lightness of perceptually completed

shapes. Questions regarding how surface lightness varies with

surround contrast [27], variability of inducer polarity [28],

temporal frequency [29], or attention [30] can all be objectively

addressed by examining the magnitude and direction of noise

correlations. Second, classification imaging, which is dogged by

notoriously low power, can be applied more efficiently by inserting

noise bars within or averaging over key region pixels. In the

illusory condition of Experiment 3, for example, we found a main

effect of inducer contrast polarity after having run only 1200 trials

per condition (6 subjects), which is almost an order of magnitude

better than previous studies [2,5,9]. Finally, our results show for

the first time that the signal does not need to be corrupted with

noise for a classification image to be computed; only what the

visual system treats as signal needs to be corrupted, which in our

case is the filling-in regions.

Conclusion

By having explained seemingly inconsequential CI characteris-

tics, we uncovered a new and robust causal relation that holds

between lightness induction and perceptually completed shape.

Our results also give a new interpretation of behavioral receptive

fields, and offer a constraint on existing models of object

perception. Despite these advances, we, again, do not claim to

have explained all CI characteristics. For example, in our study

(and in Gold et al.’s), the CI contours bowed inward in the dark

real condition. The difference may ultimately owe to asymmetries

in lightness and darkness induction (see pp.543–544 in [31]) or to

poorly understood interactions between luminance-defined con-

tours and lightness. Future studies will need to investigate these CI

subtleties to further illuminate how contour and surface forming

mechanisms interact to generate representations of complete

objects.

Methods

Ethics Statement
This study was conducted in accordance with the Declaration of

Helsinki. All participants provided written informed consent. The

study was approved by the UCLA Institutional Review Board and

the Hong Kong University Institutional Review Board.

Observers
In 4 experiments, the number of subjects included (and

excluded) was: 52(5), 25(2), 15(2), and 15(0). Two of the excluded

subjects in the first experiment were multi-session (aiming to

complete 60,000 trials). Inclusion in the first two experiments

required reaching 70% accuracy with maximum contrast;

inclusion in the last experiments required performing above

chance with maximum contrast. All subjects reported normal or

corrected-to-normal vision and were naı̈ve to the purposes of the

task. Monetary compensation or class credit was granted for

participation. Observers provided written consent to participate.

Apparatus
The displays were achromatic and presented on a gamma

corrected CRT monitor with a resolution of 10246768 pixels. The

background luminance was 37 cd/m2. Displays were programmed

in MATLAB using Psychophysics Toolbox [32,33]. In the first two

experiments, the refresh rate was 85 Hz, and observers were seated

with a chinrest about 121.6 cm from the screen (display

= 18.7614 deg; pixel = 0.018 deg). In the remaining two experi-

ments, the chinrest was about 243 cm away (display = 9.367 deg;

pixel = 0.009 deg) and the refresh rate was 100 HZ.

Stimuli
Stimuli of Experiment 1. There were eight ovals, half of

which appeared on top and the other half on the bottom. The oval

movement direction was randomly chosen on each trial to be

either left-to-right or right-to-left. Such randomization reduced the

possibility of anticipatory eye movements and allowed the CI

results to generalize across movement types. Similar to prior

studies, the ovals were misaligned so that different inducing edges

of a fat or thin contour appeared at different points in time [9,12].

(Pilot data also suggest that this misalignment contributes to

contour filling-in; [11]). There were three contrast polarity

conditions, corresponding to the color of the ovals. In the dark

and light conditions, the ovals were dark or light, respectively. In

the mixed condition, two dark ovals were to the right (or left) of

two light ovals on the top, and the opposite ordering occurred on

the bottom (see Figure 2 and Movies S1–S12). Alternating contrast

polarity between, rather than within, ovals has advantages. If each

oval were half dark and half light, then there would be an

additional contour bisecting each oval, and the perceptual

organization and spatial frequency structure of the stimulus would

change. Varying contrast polarity within ovals would also increase

how often an inducing edge alternates from light to dark within a

trial, which could conceivably lead to lightness induction [28].

Other aspects of the ovals (size, spacing, and speed) and the

justification for those aspects are described elsewhere ([9],

Experiment 1, p.3464).

The luminance noise fields in Experiment 1 were highly similar

to those of Keane et al. (2007, pp.3464–3466 [9]); certain details

are worth repeating. The noise followed a Gaussian distribution,

which was truncated to 62 standard deviations from the

background luminance (as in [34]). The noise was freshly

presented on each trial, remained constant within a trial, and

appeared exactly when the ovals moved. The noise field measured

78 arcmin vertically so that it coincided with the peripheral

horizontal borders of the figures. Three aspects of the noise in the

current study differed from that of Keane, Lu, & Kellman, 2007

[9]. First, the RMS contrast was reduced from 15% to 10% (before

truncation) so that observers could reach threshold accuracy. (Pilot

data suggested that the 15% value was too high for a number of

observers.) Second, the noise field was mirror symmetric about the

central vertical axis; this reduced the CI dimensionality (the

number of pixelwise correlations) and therefore improved the CI

signal-to-noise ratio [35]. Finally, the noise field was extended

horizontally by 31% to accommodate for possible pixel correla-

tions well outside the fat figure’s boundaries. This change was
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made as an exploratory measure to consider whether these

peripheral regions were task relevant.

The fat and thin figures were virtually identical to those of

Keane et al. (2007, p.3464, [9]). The most significant difference is

that the added real contour fragments were the same contrast as

the inducers in the dark and light polarity conditions and were the

same contrast as the light inducers in the mixed condition. The

decision to draw the added line segments as white in the mixed

polarity condition was arbitrary, but doubtfully had any bearing

on the conclusions. Shapes in the real condition were defined by

luminance lines (rather than colored surfaces) to follow with

precedent [2,5,9].

Stimuli of Experiment 2. These stimuli were similar to the

first experiment, except for the magnitude of the fat/thin shape

difference. (See Movies S13–S16). More specifically, the largest

horizontal span between physically visible points of a fat shape

minus the smallest such span for a thin shape was 8.5 arcmin in

Experiment 1 and 17 arcmin in Experiment 2.

Stimuli of Experiments 3 and 4. Noise bars replaced the

global noise. These noise bars were centered within the key

regions, had a length of 26 arcmin, and a width of 1.6 arcmin. The

bars were drawn with a single contrast value, which derived from a

Gaussian distribution with a RMS of 0.1. To make the noise bars

blend in with the background (and appear as surface features),

each pixel of the noise bars was embedded into a fine-grained,

checkered pattern. Elements that composed the pattern had a

Weber contrast of +/2 50%, and a width of 1 arcmin on a side.

The pattern completely encompassed the discriminated shapes,

always appeared behind the translating ovals, and was the same

for all trials (See Movies S17–S20). To make the task sufficiently

challenging, we reduced the number of ovals from 4 to 2,

increased the oval speed to 9.9 deg/s (instead of 8.4 deg/s), and

decreased the physically visible shape differences between fat and

thin shapes to 4 arcmin. The angular size of the ovals and the

vertical/horizontal dimensions of the rectangles were the same as

before. The fragmented stimuli in the last experiment were the

same as the illusory, except that the upper portion of the lower

ovals and the lower portion of the upper ovals were extended in

length by 7 arcmin. The elongation caused the centers of the oval

to be shifted centrally (since the peripheral tips of the ovals

remained at the same location.) The elongated ovals never

overlapped with the noise bars and contributed to the disconnect-

ed appearance between the top and bottom parts of the figure.

Also, the bottom visible fragment was a translated version of the

top so that the top and bottom edges were always misaligned

(similar to the fragmented condition of Keane et al., 2007 [9]; see

also Figure 7 and Figure S1).

Procedure
In Experiment 1, subjects had to indicate with a button-press

whether a rectangle was fat (bulging outwards) or thin (tapering

inwards). All subjects were informed that it was important to

maintain fixation on a central point throughout a trial. Each

session consisted of six blocks of trials and lasted 45–60 minutes.

Three consecutive blocks contained luminance-defined contours

and another three consecutive blocks contained illusory contours.

The ordering of the contour types was counterbalanced. Each half

of a session had a block of white, dark, and mixed inducer trials,

and these three blocks were randomized. Two ‘‘multi-session’’

observers each performed 40 1500-trial sessions (250 trials/block).

Fifty additional one-session observers each performed 1200 trial in

a single sitting (200 trials/block). One-session observers always

began with 40 trials of practice. Thus each multi-session observer

performed 10000 trials/block, and the one-session observers

jointly performed 10000 trials/block. A Bayesian adaptive

staircase (QUEST) maintained 70% performance by altering oval

(and, if applicable, line segment) contrast from trial to trial [13].

The procedure for Experiment 2 was the same as that of the one-

session observers in Experiment 1. In Experiment 3 and

Experiment 4, each observer began with 100 trials of practice,

and then received 200 trials for each of the three polarities.

Polarity ordering was counterbalanced between observers. The

task in Experiment 4 was to indicate whether the top and bottom

pieces (trapezoids) were fat (fuller in appearance) or thin (trimmer

in appearance). Also, participants were given diagrams prior to the

experiment indicating where the noise bars would appear.

Participants were reminded at the beginning of each of the four

blocks (including practice) to ignore the bars when discriminating

the shapes.

Analyses
CIs were produced by averaging the noise fields for each of the

four stimulus-response categories, summing the noise fields

associated with the first response type, and subtracting the two

remaining averaged noise fields [3,4]. Fat was (arbitrarily)

designated the first response type. This means that light CI

regions correspond to pixels where noise contrast positively

correlates with a fat response, and dark CI regions correspond

to noise contrast that negatively correlates with a fat response. For

the ideal observer simulations, oval contrast was adjusted so that

accuracy was at 70% for 3000 trials. On each trial, the ideal

observer utilized a Bayesian decision rule to determine whether

the noisy stimulus was more likely a fat or thin shape template (see

ideal observer section below).

Only certain parts of the classification images were analyzed;

these were jointly termed the ‘‘regions of interest’’ or ROI. In the

first two experiments, the ROI was 3 arcmin wide on each side,

which is the same as the width of the largest gap between the fat

and thin visible portions of the shape in experiment 1. The ROI

was centered within the key regions, and measured 39 arcmin

vertically. CI pixels falling within the ROI were averaged across

subjects for the group of 50 one-session observers and across

sessions for each multi-session observer (SNN, CCY). Classifica-

tion images were blurred with a convolution kernel that was the

outer product of [1 2 3 2 1]T; other details of the blurring were the

same as Keane et al., 2007. All ROI analyses were performed on

raw (unprocessed) CIs. In the last two experiments, classification

images were computed with just the noise bar values, and ROI

analyses were performed on just the noise bar regions of the raw

CIs.

Ideal observer. An ideal observer is derived by comparing

the stimulus input with the noise-free signal image frames, i.e.; the

templates for fat and thin figures presented in piecemeal fashion

over time. This ideal observer adopts the Bayesian inference

framework to make optimal decisions using available information.

In our discrimination experiment, a dynamic stimulus input I was

generated from superimposing two matrices: a noise field N in

which each noise pixel is independently sampled from a Gaussian

distribution with mean 0 and variances2; and one of the two

templates(F, T) representing the targets for the fat and thin figures.

As a result, the noisy stimuli I can be written as

I t
j ~Ft

j zNt
j , if fat figure F is presented

I t
j ~Tt

j zNt
j , if thin figure T is presented

where I t
j , Ft

j ,Tt
j , and Nt

j respectively indicate the intensity values
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of the j-th pixel in the t-th frame for the stimulus, fat and thin

targets, and the noise field, respectively. Given that the stimulus

generation is known, we can compute the likelihood probability

that a stimulus appears to be a fat or a thin figure as,

P(IDF)~P
t
P
j

1ffiffiffiffiffiffi
2p
p

s
exp {

(I t
j {Ft

j )2

2s2

 !

P(IDT)~P
t
P
j

1ffiffiffiffiffiffi
2p
p

s
exp {

(I t
j {Tt

j )2

2s2

 !

The decision rule of the ideal observer is to compare the two

likelihood probabilities and choose the template target that

provides the maximum likelihood.

Supporting Information

Figure S1 Dimensions of shapes and ovals in Experi-
ments 3 and 4. The fragmented and illusory stimuli were closely

matched on most dimensions.

(TIF)

Movie S1 Movie of fat illusory rectangle with dark
inducers. In all movies, the shapes are presented in high contrast

and the luminance noise is presented in reduced contrast for

illustration purposes. Movies play in QuickTime, and are

optimally viewed from about 4 feet (Experiments 1–2) or 8 feet

(Experiments 3–4), assuming a screen pixel size similar to that

described in the Methods.

(MOV)

Movie S2 Movie of thin illusory rectangle with dark
inducers in Exp 1.
(MOV)

Movie S3 Movie of fat illusory rectangle with light
inducers in Exp 1.
(MOV)

Movie S4 Movie of thin illusory rectangle with light
inducers in Exp 1.
(MOV)

Movie S5 Movie of fat illusory rectangle with mixed
inducers in Exp 1.
(MOV)

Movie S6 Movie of thin illusory rectangle with mixed
inducers in Exp 1.
(MOV)

Movie S7 Movie of fat real rectangle with dark inducers
in Exp 1.
(MOV)

Movie S8 Movie of thin real rectangle with dark
inducers in Exp 1.
(MOV)

Movie S9 Movie of fat real rectangle with light inducers
in Exp 1.
(MOV)

Movie S10 Movie of thin real rectangle with light
inducers in Exp 1.
(MOV)

Movie S11 Movie of fat real rectangle with mixed
inducers in Exp 1.
(MOV)

Movie S12 Movie of thin real rectangle with mixed
inducers in Exp 1.
(MOV)

Movie S13 Movie of fat illusory rectangle with dark
inducers in Exp 2.
(MOV)

Movie S14 Movie of thin illusory rectangle with dark
inducers in Exp 2.
(MOV)

Movie S15 Movie of fat real rectangle with dark
inducers in Exp 2.
(MOV)

Movie S16 Movie of thin real rectangle with dark
inducers in Exp 2.
(MOV)

Movie S17 Movie of fat illusory rectangle with mixed
inducers in Exp 3.
(MOV)

Movie S18 Movie of thin illusory rectangle with mixed
inducers in Exp 3.
(MOV)

Movie S19 Movie of fat fragmented figure with mixed
inducers in Exp 4.
(MOV)

Movie S20 Movie of thin fragmented figure with mixed
inducers in Exp 4.
(MOV)
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