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INTRODUCTION

It is an exciting time to study visual object perception. Although object perception

research has a long tradition, lately its visibility in cognitive science and neuroscience has

greatly increased. One reason for heightened interest is that diverse areas of research now

suggest a central role for objects in many aspects of human cognition, including the

organization of attention, perception, knowledge representation, and language.

Meanwhile, approaches to studying object perception have expanded and matured.

Since the Gestalt psychologists first framed basic questions, significant progress has been

made in identifying key principles and describing important phenomena. For the most part,

however, these ideas have not coalesced into a coherent structure. A textbook in perception is

more likely to offer a catalog of phenomena on “perceptual organization” than a systematic

account of how objects are perceived.

The situation is changing. We can glimpse, if only schematically, an interrelated set of

information processing tasks that enable us to perceive objects. Moreover, we are beginning to

understand both the computations and the neural mechanisms that accomplish these tasks. We

owe this current good fortune to several developments, not least of which is an expanding

body of research on contour, surface, and object perception. More formal computational

analyses of these problems have also progressed substantially. Accompanying these recent

developments are comparatively mature psychophysical and neurophysiological accounts of

the earliest stages of visual cortical processing. Together, these converging areas of research



provide a strong foundation for understanding functions of the visual system that depend on,

but go far beyond, basic sensitivity to contrast and orientation.

In this chapter, we have several goals. One is to present an overall theoretical picture
of the processes of object perception, extending from the early extraction of edges and
junctions to the higher-order tasks of unit formation and shape perception. This framework
sets the stage for our second goal: to emphasize several issues that confront object perception
researchers and indicate specific questions for continuing research. As we will see, some tasks
of object perception are relatively well understood, whereas others remain vague. Much of the
value of any overall framework lies in highlighting areas where more work is needed.

Our final goal in this chapter is to enlarge the domain. The study of visual object
perception has tended to focus on static, two-dimensional (2-D) images. In the natural

environment, human perception both grapples with and benefits from information in three
dimensions and information given over time through object and observer motion. The
research that we will consider on three-dimensional (3-D) and kinematic object perception
falls well outside the scope of existing models. Nonetheless, we will indicate points of
continuity in the constraints and processes that may, in time, lead toward a unified account of
two-dimensional, three-dimensional, and dynamic processing in object perception.

Geometric, Process, and Neural Models

Efforts at modeling the processes of object perception have evolved in two different
directions. Investigations of one kind have addressed the stimulus relationships that govern
the perception of objects. The aim of these efforts is to specify precisely the spatial and
temporal relations of contours and surfaces that determine perception of an object’s unity and
shape. We will label the theoretical accounts derived from these investigations as geometric

models. One such approach — Kellman and Shipley’s (1991) model and its extensions — will

be considered in detail.
Other efforts, somewhat independent from the first type, have focused on devising

neural models that perform the kinds of computations necessary for various aspects of object

perception. In the section of this chapter on neural models, we will examine some of the

psychophysical and neurophysiological research on which these models are based, and

spotlight three models of object perception processes: the model of Heitger, Rosenthaler, von

der Heydt, Peterhans, and Kübler (1992) for edge and junction detection; the model of Yen

and Finkel (1998) for contour integration; and a later elaboration of the Heitger et al. model

(Heitger, von der Heydt, Peterhans, Rosenthaler, & Kübler, 1998) as an example of a neural-

style model of contour interpolation. These computational models have been chosen both for

the success of their simulations and, more importantly, their use of biologically plausible

mechanisms in their implementation.

One might think that detailed proposals concerning the neural interactions subserving

object perception would await a precise understanding of relevant stimulus relationships. That



is, neural models might presuppose complete geometric models. In practice, this has not been

the case. Rather, concepts for implementing contour, surface, and object processes via neural

circuitry have co-evolved with experimental and theoretical work on the stimulus relationships

that govern object perception.

This co-evolution has important implications. On the positive side, work on issues of

implementation in neural circuitry need not await a finished geometry and psychophysics of

object perception. On the negative side, existing neural models do not implement all that is

known even now about the geometry of object formation, nor, obviously, can they encompass

factors that are not yet determined. Our task, then, after describing the different types of

models, will be to assess their relationships: how geometric and neural models can each

advance the other type, and, indeed, how they can merge into a complete picture of object

perception. As this complete picture is still beyond reach, we use the opportunity to highlight

issues for future research.

A FRAMEWORK FOR OBJECT PERCEPTION: TASKS, GEOMETRY, AND

PROCESSES

Much of what we know about object perception can be captured in the framework
displayed in Figure 1. This process model combines established findings with several
hypotheses about the representations and information processing tasks involved with visual
object perception.

In the model, rectangular boxes indicate functions or processes, and octagonal ones
indicate representations. Note that the model is rather conservative regarding representations.

Aside from output representations of shape and unity (the specification of which regions
belong to a single form), there is only one intermediate representation: the visible regions

representation. The nature and evidence supporting the existence of these representations will
be discussed below.

Overview of the Model

The processing scheme described by Figure 1 begins with the input to the model: the
optic array itself. Although much of our discussion will focus on a single static image as the
input, a complete model should utilize the time-varying optic array, sampled by two eyes of
an observer. Both depth and motion play important roles in segmentation and grouping, as we
will consider later.



Figure 1. A Framework for Object Perception. Rectangles indicate functions or processes and octagons indicate

representations. See text for details.
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The visual system extracts two types of information from the optical input.
Characteristics of luminance, color, texture, depth, and motion enter a surface processing
stream, which represents these properties in relation to their surface locations; this
information later will be used to help determine connections among spatially-distinct visible
regions. Discontinuities in luminance, color, texture, depth, and motion enter a separate
stream concerned with the detection of edges and junctions, and, later, the processing of

meaningful contours.
In the contour stream, local activations of orientation-sensitive units are integrated

according to their spatial relations to form visible contours. Some of these contours are
classified as occluding edges, based in part on junction information. At occluding edges, the
direction of boundary assignment is determined, thus indicating which of two adjacent
surfaces “owns” the contour.

In the surface stream, spatially contiguous locations possessing homogeneous or
smoothly varying surface attributes, including depth, become grouped together. The grouping
in this stream complements the edge process, in that it depends on the absence of the surface
discontinuities extracted by the edge stream. Together, the contour and surface streams define
tokens in the visible regions representation. This representation labels relatively homogeneous

regions as connected surface areas, encodes the locations and orientations of edges and
corners of these regions, and specifies for each edge whether it is owned by that region or by
another region.

Because of occlusion, visible regions are not objects. In fact, they bear a complex
relationship to the objects in the physical world. For the objects of perception to correspond to
meaningful objects in the world, interpolation processes must operate to connect visible
regions under occlusion.

Evidence suggests the existence of two such interpolation processes (Kellman &
Shipley, 1991; Yin, Kellman, & Shipley, 1997). The boundary interpolation process connects
oriented edges across gaps, according to the geometry of contour relatability. These
interpolated boundaries most often appear as occluded contours, but given certain depth

relationships, may also be perceived as illusory contours. The surface interpolation process

complements the boundary process, in that it can lead to perceived connections among visible
regions even when the object’s boundaries are not well specified. Unlike the boundary
interpolation process, however, operation of the surface interpolation process requires that
two visible surfaces match or fall along a smooth gradient. When one of these criteria is
satisfied, surface qualities spread under occlusion within real and interpolated boundaries.

Regions connected by the interpolation processes feed into two output representations.
The units representation encodes explicitly the connectedness of visible regions under
occlusion. When the surface interpolation process alone has given all or some of these
connections, overall shape may be vague. More often, boundary interpolation accompanies
surface interpolation, and a determinate shape is encoded in the shape representation. This

representation serves as the primary input to object recognition.



The framework described operates “bottom-up.” That is, the basic process model does
not incorporate any feedback from higher levels to earlier ones. Object perception
undoubtedly can proceed without such feedback, and likely does so in cases where there is no
obvious involvement of familiarity or symmetry. Whether there really are top-down
influences in basic segmentation and grouping processes, as opposed to recognition from
partial input, remains controversial (e.g., Kellman, 2000; van Lier, 1999), as we will see

below. One valuable aspect of the current framework is that it allows us to consider explicitly
the loci and nature of putative top-down effects.

As an example, Peterson and her colleagues (e.g., Peterson, 1994; Peterson & Gibson,
1991, 1994) have argued that figure-ground segregation in otherwise ambiguous stimuli can
be influenced by the familiarity of a shaped region; the familiar shape is more likely to be
seen as figure. Such an effect could be incorporated into the model as shown in Figure 2.
Figure-ground determination corresponds to boundary assignment in the model. For familiar
shape to influence boundary assignment, the shape of some contour or region must be
encoded and recognized — matched to a representation stored in memory. As a result of the
match, the boundary assignment of the stored representation feeds back via the current shape
representation to determine the boundary assignment of the stimulus.

We present this example only to illustrate how top-down effects could, in principle, be
incorporated into the model. Other, perhaps more controversial, ideas about top-down
processing are considered later in this chapter.

Having completed our overview of the model, we now look more closely at the
constituent processes and representations, beginning with the extraction of edges and
junctions.

Edge and Junction Detection

For our purposes, stimulus encoding in the earliest cortical visual areas — V1 and V2
— represents the starting point for the computations leading to edges, contours, surfaces, and
objects. Individual cells in these areas respond to luminance contrast in particular areas of the
visual field, with selectivity for specific orientations and spatial frequencies (e.g., Campbell,
Cooper, & Enroth-Cugell, 1969; Hubel & Wiesel, 1968). By area V2, and perhaps earlier,
many cells respond selectively to particular binocular disparities, providing the basis for

stereoscopic depth perception (Fischer & Poggio, 1979). Some cells in the early cortical areas
also respond preferentially to motion, although areas upstream, particularly area V5 (the
human homologue to macaque area MT), appear to be specialized for motion processing.

The framework in Figure 1 assumes that these early cortical responses form the inputs
into processes that detect meaningful edges and contour junctions in the optical



Figure 2. Illustration of a possible top-down effect of contour shape on boundary assignment. See text for details.
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projection (Heitger et al., 1992; Marr & Hildreth, 1980; Morrone & Burr, 1988; but see Watt,
1994, for an alternative approach). Although it appears as a simple box in the model, there
actually are several complexities even at this stage.

Multiple Edge Inputs. Object perception utilizes several types of edge inputs, including
luminance and chromatic changes, but also discontinuities in texture, stereoscopic depth, and
motion (Gibson, Kaplan, Reynolds, & Wheeler, 1969; Julesz, 1971; Shipley & Kellman,

1994). To complicate matters further, both object motions and image displacements given by
observer motion contribute to edge processing.

Though luminance discontinuities receive the most attention in discussions of edge
detection, some of these other edge inputs actually may be more important. The usefulness of
luminance discontinuities for edge detection rests on certain ecological facts — facts about
the physical world and the information it makes available for perception. Luminance and
chromatic edges provide meaningful information because separate objects and surfaces in the
world tend to be made of different materials that interact with light differently. Thus,
significant boundaries in the world often correspond to locations at which the amount or
spectral composition of light changes abruptly.

The same logic applies to edges detected from discontinuities in texture, depth, and

motion. Adjacent surfaces in the optic array often project from different objects, but these
will, in general, be at different depths. Thus, a stereoscopic depth map will have
discontinuities at surface boundaries. The same is true of the velocity field, in which optical
change is registered at each visible feature: velocity discontinuities will appear at boundaries
during object or observer motion.

Whereas luminance, color, and texture edges may correspond to markings on a
surface, motion and depth discontinuities rarely arise in the absence of a boundary between
two objects. The high ecological validity of motion and depth edges suggests that they play a
primary role in the detection of meaningful edges in the world. More research is needed to
determine how the visual system integrates these various sources of edge information.

Junctions. Contour junctions can be defined as points along a contour that have no unique

orientation. More intuitively, a junction is an intersection of two or more contours in the
optical projection. Contour junctions include the sharp corners of objects, as well as the points
where contours of separate objects intersect.
Contour junctions of all types play an important role in the segmentation and grouping of
objects. Kellman and Shipley (1991) observed that the contours interpolated between two
visible regions invariably begin and end at junctions, which they labeled “tangent
discontinuities” (TDs). In fact, Kellman and Shipley presented a proof that all instances of
occlusion produce TDs in the optical projection. This ecological invariant may be the reason
that junctions figure prominently in initiating contour interpolation processes: TDs are a



potentially rich source of information about the loci of occlusion. In illusory contour displays,
for which tangent discontinuities can be eliminated, the rounding of TDs eliminates or vastly
reduces the perception of interpolated contours (Shipley & Kellman, 1990).

Some researchers have questioned the generalization that interpolated contours must
begin and end at TDs. Lesher and Mingolla (1993) presented a Kanizsa-style illusory contour
display in which the inducers changed gradually in luminance, thus blending into the
background (Figure 3b). Phenomenologically, this display supports the formation of illusory

contours, even though, formally speaking, the inducers contain no bounding edges and thus
cannot have any discontinuities in edge direction.

Although this display raises interesting issues, it does not bear directly on the role of
TDs. Close inspection suggests that removing the luminance discontinuities that normally
define edges, as in Lesher and Mingolla’s display, does not entail the removal of tangent
discontinuities — sudden changes in the slope of an edge. Despite the luminance gradient, the
edges remain reasonably clear and well-localized. In all likelihood, contrast-sensitive neurons
selective for low spatial frequencies respond to the gradients much as they do to “real” edges,
giving rise to perceived contours. The relevant tangent discontinuities are defined by the
perceived edges.

Other researchers have pointed out that weak illusory contours sometimes arise from

inducers with slightly rounded corners (Figure 3c; Hoffman, 1998; Shipley & Kellman, 1990;
Tse & Albert, 1998). Neurons selective for low spatial frequencies may, once again, be
responsible for this phenomenon. Low spatial-frequency operators cannot discriminate
between regions of high curvature and sharp junctions. In essence, rounded corners are

(a) (b) (c)

Figure 3. Three variations of the Kanizsa square. (a) Illusory contours clearly are visible in the classical

display, which contains uniformly colored inducers and sharp tangent discontinuities. The illusory contours

remain visible in (b), despite the elimination of luminance discontinuities from the inducers. The illusory
contours become weak or absent with the rounding of tangent discontinuities (c). Figure B redrawn from

Vision Research, 33, Lesher, G. W., & Mingolla, E., The role of edges and line-ends in illusory contour
formation, pp. 2253-2270, Copyright 1993, with permission from Elsevier Science. Figure C redrawn from

Perception, 27, Tse, P. U., & Albert, M. K., Amodal completion in the absence of image tangent
discontinuities, pp. 455-464 (Fig 8, p. 460), Copyright 1988, with the permission of Pion Ltd., London.



tangent discontinuities to neurons that encode information at larger spatial scales. The conflict
between these coarse-coding neurons, which register TDs, and cells that respond to higher
spatial frequencies, which detect the rounded corners, likely explains why the illusory
contours in these displays appear quite weak. When high spatial frequencies — and this
conflict — are eliminated by squinting or by increasing viewing distance, the perceived
strength of the illusory contours increases substantially.

Available evidence supports the crucial role of contour junctions in boundary
interpolation (e.g., Shipley & Kellman, 1990), which in turn is crucial for unit formation and
shape perception, as we consider shortly. To support these and other perceptual tasks, both
edge and junction information may be extracted early in cortical processing and at multiple
spatial scales. Although the mechanisms of junction detection have, as yet, received little
attention, a promising approach may be found in the model of Heitger et al. (1992). This
model proposes a specific operator that extracts “key points,” which includes both contour
ends and junctions. We examine this model in more detail below.

Contour Integration

The problem of contour integration involves representing a visible contour as

continuous. Meaningful contours extend well beyond the receptive fields of oriented neurons

in early cortical visual areas. Therefore, representation of a contour as a connected unit

requires the integration of information from neurons with receptive fields tuned to different

regions of space. Several recent studies address possible mechanisms for linking the separate

responses of orientation-sensitive units (e.g., Moulden, 1994; Pettet, McKee, & Grzywacz,

1998; Yen & Finkel, 1998).

These investigations of contour integration ultimately may help to answer another

important question: whether a similar mechanism governs boundary interpolation — the

connection of edges across gaps in the input. Field, Hayes, and Hess (1993) investigated the

spatial relations necessary for contour integration in a series of elegant empirical studies. The

relations they uncovered mirror the formal requirements of Kellman and Shipley’s (1991)

model of contour interpolation across gaps. This finding suggests a close relationship between

contour integration and contour interpolation, an idea that will be further explored later in this

chapter.

Other important issues about contour integration involve the nature of the
representation and underlying neural mechanisms. Explicit contour representations
presumably are important for assigning contours to objects and for encoding shape. Whereas
earlier stages of visual processing may be viewed as more or less direct responses to energy

variables in the input, contour integration entails a symbolic representation (i.e., an explicit
description about a specific aspect of an object or surface). Reversible figure-ground displays
are among the many visual phenomena implying that contours are, indeed, explicitly



represented as unitary entities. In these displays, a contour separating two regions switches its
boundary assignment (which region it “belongs to”) as a unit; we do not experience switching
of parts of contours. Thus, it appears that by this stage of visual processing, contours, and not
smaller fragments, are the units to which boundary assignment applies.

Edge Classification and Boundary Assignment

To perceive objects, it is not sufficient merely to detect edges. Some edges in the
visual array delimit the boundaries of objects, whereas others represent shadows or textural
markings on a surface. The process of distinguishing these possibilities is termed edge

classification. Edge classification, most importantly, results in the identification of occluding

edges: locations where an object or surface comes to an end. As the name suggests, these
edges also mark places at which one surface continues behind another.

A critical piece of information for edge classification may be the convergence of
different kinds of evidence. Shadows and textural markings typically produce only one or two
types of discontinuity in the visual input (luminance and color for textural markings;
luminance and perhaps motion for shadows). By contrast, occluding edges often involve
discontinuities in multiple perceptual properties, including luminance, color, texture, motion,
and stereoscopic depth. Therefore, the visual system may, in part, define occluding edges by
the convergence of several discontinuities in the same spatial location.

Closely related to edge classification is boundary assignment, or figure-ground

perception. Many visible edges are occluding edges, which, as the Gestalt psychologist Kurt
Koffka put it, have a “one-sided function.” A contour appearing in the optical projection
represents the boundary of the surface on one side, whereas the surface on the other side
continues behind. Each such edge poses a problem to the visual system insofar as it defines
the shape only of the surface in front; no local sensory information is received about the
location, shape, or other characteristics of the surface continuing behind. Interpolation
processes, described below, pursue the task of recovering object unity and shape despite
occlusion.

Several kinds of information contribute to boundary assignment. In ordinary
perception, stereoscopic and kinematic cues to depth (including motion parallax and
accretion-deletion of texture) probably play the most important role. Occluding edges

signaled by kinematic and stereoscopic discontinuities carry with them depth-order
information that reveals, unambiguously, the appropriate boundary assignment: the nearer
surface owns the boundary.

Another source of information comes from contour junctions. In particular, “T”
junctions, which underlie the depth cue of interposition, may be helpful in determining
boundary assignment. As shown in Figure 4, contour junctions can be classified into different
categories (e.g., Barrow & Tenenbaum, 1986), depending on their configurations. The
defining feature of a T-junction is a smooth, continuous contour on which another contour



terminates (Figure 4a); the absolute and relative orientations of the two contours are incidental
(Figure 4b). Once the visual system has encoded a T-junction, the depth relation of the two
constituent contours follows: the one forming the “roof” of the T appears to be in front of the

one forming the “stem.” Therefore, the surface that is uninterrupted by the “stem” owns the
contour in question.

In his classic discussion of figure-ground organization, Rubin (1915) emphasized a
third class of boundary assignment cues: the relations among visible areas. Rubin noted, for
example, that an enclosed area tends to be seen as figure, whereas the enclosing area is
perceived as ground. Other factors discussed by Rubin involve orientation, convexity, and
symmetry. These relational cues to boundary assignment may be considered relatively weak,
as they will readily be overridden by depth information given by stereopsis, kinematic cues,
or T-junctions. Finally, as mentioned earlier, the familiarity of a contour shape may influence
boundary assignment (Peterson & Gibson, 1991; Rubin, 1915).

The Visible Regions Representation

Apart from the final outputs of unity and form, the process model presented in Figure 1

contains one intermediate representation: the visible regions representation. This

representation makes explicit the unity of a continuous visible area; that is, it encodes the

visible points in certain regions as belonging to a single, uninterrupted surface.

The visible regions representation captures several important properties of earlier

proposals. Like the intended results of image segmentation algorithms (e.g., Wang & Terman,

1997), it partitions the optic projection into distinct, non-overlapping regions. Like Marr’s

(1982) 2.5-dimensional sketch, it assigns observer-relative depth to these regions. The visible

regions representation also resembles the uniform connectedness idea of Palmer and Rock

(1994): the visual system encodes closed regions with homogeneous surface properties as a

(a) (b) (c) (d)

Figure 4. Types of contour junctions. In a classic T-junction (a), the “roof” is seen as passing in front of the

“stem.” The junction in (b) also is a “T,” as a terminating contour meets a continuing contour; the relative
orientation of the two contours is irrelevant. Other types of junctions assist with image segmentation, but are

not immediately relevant to boundary assignment. The Y-junction (c) depicts an object corner, whereas the

X-junction (d) indicates transparency.



single unit. However, Palmer and Rock treated common surface lightness, color, and texture

as the primary determinants of uniform connectedness; motion and depth were attributed

secondary roles. By contrast, our visible regions representation assumes that depth relations,

given by stereoscopic and motion parallax cues, take precedence over the commonality of

lightness and color. A surface that is continuous in depth but contains various discontinuities

in surface coloration would be encoded as a single unit in the visible regions representation.

Conversely, the visible regions representation would tag as separate two adjacent,

homogeneously textured regions with an abrupt change of binocular disparity between them.

A number of facts support the idea that human perception incorporates an intermediate

representation of visible regions. For example, although complete object representations are

one result of perceptual processes, we have little trouble seeing which areas of objects are

partly occluded. Moreover, artists can paint or draw the visible regions of objects. Although

this ability may take some practice, it might not be possible at all without some explicit

representation of visible regions.

The visible regions representation probably should not be understood as a set of

frontoparallel image fragments (unlike the results of region segmentation processes in

machine vision). One of the major problems facing art students is foreshortening — drawing

the correct projected size of an object slanted in depth, relative to other objects. For example,

if one’s hand is rotated away from the vertical (around a horizontal axis), it projects a very

small vertical extent to the eye. Novice art students tend to draw the hand’s projection as much

too tall. This error suggests that the visible regions representation is not a canvas-like or

image-like sheet, but a representation that includes depth. The art student can see which parts

of the hand are visible, but these are seen at true size, oriented in depth; depicting them as

frontoparallel fragments on a canvas presents difficulties.

Boundary Interpolation

As a consequence of occlusion, many objects in ordinary environments project to the
eyes as multiple, spatially distinct fragments. As a result, a single object may be represented,
at an intermediate stage, as several visible regions. Interpolation processes allow the visual
system to assign these spatially distinct visible regions to a unitary object. Ultimately, these
processes lead to more complete object representations, crucial for extracting meaningful
information about an object’s shape.

By definition, interpolation processes connect parts across gaps in the input. There
appear to be two types: boundary interpolation, which we consider in this section, and surface

interpolation, which we consider in the next.

Geometric Model of Boundary Interpolation: Kellman and Shipley (1991). In the Kellman
and Shipley model, tangent discontinuities (TDs) mark the possible starting points for



boundary interpolation. However, not all TDs lead to boundary interpolation. Some types of
contour junctions indicate that the boundary has come to an end and should not be continued
(e.g., a Y-junction; see Figure 4c). In other cases, a contour may be seen as passing behind an
occluder, but does not link up perceptually with any other visible contour. Evidence suggests
that these boundaries are, nonetheless, represented as continuing behind the junction point,
perhaps for some fraction of the visible edge’s length (He & Nakayama, 1994; Kanizsa, 1979;

Yin, Kellman, & Shipley, 1997). We call this phenomenon amodal continuation to distinguish
it from interpolation or completion. Yin et al.’s data suggest that amodally continued contours
follow the direction of the visible edge’s tangent at its point of occlusion.

Boundary interpolation occurs when a contour that disappears behind a surface, thus
creating a TD, connects to a spatially separated contour on the other side of an occluding
object. This interpolation process proceeds only when the visible contours, and their TDs,
satisfy certain geometric relationships. These relationships, first suggested by the Gestalt idea
of good continuation, have been formalized in the construct of contour relatability (Kellman
& Shipley, 1991, 1992).

The notion of relatability expresses the conditions necessary for interpolation between
two visible edges. Intuitively, two edges separated by a gap or occluder are relatable if they

can be connected with a continuous, monotonic (singly inflected) curve. The relatability
criterion embodies the constraint that the boundaries of objects tend to be smooth.

Mathematically, relatability can be defined with reference to the construction shown in
Figure 5. In this diagram, E1 and E2 represent the edges of surfaces. R and r depict the
perpendiculars to these edges at the point where they lead into a tangent discontinuity; R is
defined as the longer of the two perpendiculars. The angle of intersection between R and r is
termed ϕ. Relatability holds whenever a smooth, monotonic curve can be constructed starting

from the endpoint of E1 (and matching the slope of E1 at that point) and proceeding through a
bend of not more than a 90˚ to the endpoint of E2 (and matching the slope of E2 at that point).

E1

E2

R

rϕ

Figure 5. Geometric relationship for defining whether two edges (E1, E2) are relatable. See text for details.
After Kellman and Shipley (1991).



More formally, E1 and E2 are relatable if and only if:

0 ≤ <R rcos .ϕ

This equation can be unpacked in two steps. The left-hand side of the inequality expresses the
limitation that the curve constructed to connect E1 and E2 cannot bend through more than 90˚;
if ϕ is greater than 90˚, then cos ϕ is negative. The right-hand side of the inequality states that

the projection of R onto r (i.e., R cos ϕ) must fall within the extent of r. If this inequality is

violated (i.e., R cos ϕ ≥ r), then any connection between E1 and E2 would have to be doubly

inflected to match the slopes at the TDs, or would have to introduce sharp corners where the
interpolated edge meets the physically specified edge. According to this model, boundary
interpolation does not occur in such cases.

Although the definition gives the limits of relatability, it is not intended as an all-or-
none concept. Kellman and Shipley (1992) described contour relatability as decreasing
monotonically with deviations from collinearity, falling to zero at a relative angle of 90˚.
Singh and Hoffman (1999) proposed a specific measure for this graded decrease.

The basic notion of relatability may be extended in several ways. First, the relatability
criterion, as originally formulated, considers only the tangents at the points of discontinuity. It
is possible that the boundary interpolation mechanism also utilizes the curvature of the visible

contours (e.g., Guttman & Sekuler, 2001; Takeichi, Nakazawa, Murakami, & Shimojo, 1995).
This is not entirely clear, however, as the issue of curvature may be confounded with the issue
of how much of a contour is used to determine its slope at the point of tangent discontinuity.
Second, it now appears that straightforward extensions of the static, 2-D relatability construct
govern both 3-D contour interpolation (Kellman, Yin, Shipley, Machado, & Li, 2001) and
dynamic visual interpolation, when visible contours appear sequentially in time (Palmer,
Kellman, & Shipley, 1997). We discuss these developments briefly at the end of the chapter.

Relatability and Good Continuation. The notion of contour relatability descends from the
Gestalt idea of good continuation. Specifically, it formalizes the original Gestalt principle in
some respects and extends it in others.

Max Wertheimer, in his classic (1923/1958) paper Untersuchungen zur Lehre von der

Gestalt (“Laws of organization in perceptual forms”), presented a number of figures
illustrating the principle of good continuation. The displays, which involved the segmentation
of line drawings with fully visible contours, were accompanied by this advice:

On the whole, the reader should find no difficulty in seeing what is meant here. In designing a

pattern, for example, one has a feeling how successive parts should follow one another; one
knows what a “good” continuation is, how “inner coherence” is to be achieved, etc.; one

recognizes a “good Gestalt” simply by its own “inner necessity.”

Though the demonstrations were compelling, neither Wertheimer nor his successors offered a
real definition of “good continuation.” Michotte, Thines, and Crabbe (1964) extended the idea
of good continuation to the problem of partly occluded objects; again, the notion remained
intuitive, illustrated by compelling displays, rather than formally characterized.



So just what is the “good” in good continuation? An obvious candidate involves
mathematical notions of smoothness. But which notion of smoothness? A number of
possibilities exist (e.g., Prenter, 1989). Kellman and Shipley’s (1991) model defines
smoothness in reference to the first derivatives, or slopes, of contours. Formally, a contour is
smooth if there are no discontinuities in its first derivative; both sharp corners and contour
intersections violate this description of smoothness. As Kellman and Shipley pointed out, this

definition has the benefit of producing a complementary relationship between first-order
contour continuity as the basis for interpolation and first-order discontinuities (i.e., TDs) as
the basis for image segmentation. As previously discussed, the latter indicate possible loci of
occlusion and mark the beginning and end points of interpolated edges.

In addition to specifying the relevant smoothness notion, relatability imposes
additional constraints not embodied in earlier notions of good continuation. One such
constraint is monotonicity: interpolated contours bend in one direction only. A general notion
of smoothness permits double inflections, whereas relatability excludes them (apart from a
small threshold tolerance for misalignment of relatable edges; see Shipley & Kellman,
1992a). This limitation has not been universally accepted; a number of investigators suggest
that doubly-inflected interpolations may occur in object completion (Liu, Jacobs, & Basri,

1999; Takeichi et al., 1995). Another constraint expressed in the notion of relatability is the
limitation that interpolated contours cannot bend through more than 90˚, an idea that has
received substantial empirical support (Field et al., 1993; Polat & Sagi, 1993, 1994).

In sum, by formalizing and adding constraints to the original notion of good
continuation, relatability produces clear predictions that can be empirically assessed.
Although some aspects of the model may require elaboration, available evidence, as we will
see shortly, supports relatability as a formal account of the basic geometry of human boundary
interpolation.

The Identity Hypothesis in Contour Interpolation. The geometry and processes of contour
interpolation in the Kellman and Shipley (1991) model apply equally to several interpolation
phenomena that, traditionally, have been considered separately. In particular, the identity

hypothesis suggests that the same contour interpolation process connects contours under
occlusion (amodal completion), creates illusory contours (modal completion), and plays a role
in other contour-connection phenomena including certain transparency displays.

Figure 6 depicts partly-occluded, illusory, and transparent shapes having equivalent
physically-specified contours and gaps. Phenomenally, the shape of the interpolated contours
is the same in the three images. More importantly, however, we believe that the same
interpolation process gives rise to the interpolated contours in all cases. The perceptual
differences among these phenomena reside only in the depth ordering of the interpolated
contours and other surfaces; the processing of relative depth may interact with the boundary
interpolation process, but relies on a different mechanism.



A large body of evidence supports the idea that a common boundary interpolation
process serves modal and amodal completion (Kellman, Yin, & Shipley, 1998; Ringach &
Shapley, 1996; Shipley & Kellman, 1992a). For example, Kellman et al. found that partly
occluded contours can join illusory contours to produce a shape with clearly defined
boundaries. (An example appears below in Figure 15.) This merging suggests that illusory and
occluded contours arise from a common mechanism.

Several other theoretical arguments support the identity hypothesis. A compelling one
relates to some interesting phenomena that we have termed self-splitting objects; examples
appear in Figure 7. Remarkably, in these cases, homogenous areas split into two perceived
objects. The Kellman and Shipley (1991) model explains this effect as follows. The display in
Figure 7a contains four TDs (marked with arrows in Figure 7b), each of which can initiate
contour interpolation processes. Four pairs of edges lead into the TDs; as each pair satisfies
the relatability criteria, contour interpolation connects all four edges (indicated in Figure 7b

(a) (b) (c)

Figure 6. An illustration of the identity hypothesis: (a) partly occluded square; (b) illusory square;

(c) transparent square. Although they appear quite different, these three images formally are similar in that the

same physically-specified edges define the central figure in each case. According to the identity hypothesis,
the process that interpolates edges across gaps also is the same in these cases.

(b)(a) (c)

Figure 7. Self-splitting objects. (a) This shape typically is seen as two elongated black forms, even though the
entire figure possesses identical surface properties. (b) Arrows indicate tangent discontinuities and dotted

lines mark the resulting interpolated contours of the same self-splitting object. (c) Despite uniform surface
qualities, most observers describe this image as two interlocking rings.



by dotted lines). Closed contours, comprised of physically-specified and interpolated contour
segments, define each of the two perceived objects.

For our present purpose, the relevant question is: How do we interpret these objects’
interpolated boundaries? That is, do they appear as illusory contours or as partly occluded
contours? At any time, one of the two objects in Figure 7a appears to cross in front of the
other. The boundaries of the object in front appear as illusory contours, whereas those of the

object in back appear as occluded contours. However, the depth ordering of the two objects is
unstable over time; which object appears in front may fluctuate. When one object switches
from being in front to being in back (or vice versa), its contours switch from being illusory to
being occluded (or vice versa).

Self-splitting objects do not always possess this instability of depth order. The display
in Figure 7c appears to be more stable. Most observers describe the figure as containing two
interlocking rings. However, the “two rings” possess identical surface qualities; therefore, the
boundaries that separate the objects must be attributed to the contour interpolation processes
described above.

Implicit in the idea of “interlocking,” the perceived depth ordering of the two rings
varies across the image; the ring at the top appears to pass in front of its counterpart on the

right side of the display, but beneath it on the left. Petter (1956) studied displays of this sort
and discovered that this perceptual outcome follows a rule, which we can state as follows:
Where interpolated boundaries cross, the boundary that traverses the smaller gap appears to

be in front. Thus, the thicker parts of the rings appear to lay on top of the thinner parts, as the
former have smaller gaps in the physically-specified contour.1

The relevance of Petter’s effect to the identity hypothesis becomes apparent when one
considers the nature of the rings’ perceived boundaries. As in the case we considered above,
we perceive illusory contours where the rings pass in front, but partly occluded contours
where they connect behind. However, according to Petter’s rule, the perception of each
interpolated contour as in front or behind — and, in turn, as “illusory” or “occluded” —
depends on its length relative to the interpolated contours that cross it. Logically, this

statement implies some sort of comparison or competition involving the crossing
interpolations. To accomplish this comparison, the visual system must first register the
various sites of interpolation. As stated above, comparing the lengths of the interpolations
precedes the determination of whether an interpolated contour ultimately will appear as in
front of or as behind other contours (and, thus, as illusory or occluded); therefore, the
registration of interpolation sites also precedes the determination of depth ordering. That is, at
least in some cases, contour interpolation processes must operate prior to the processes that

determine the final depth ordering of the constructed contours. This, in turn, implies that there

                                                  
1 Looking back at Figure 7a, we can now see that Petter’s rule can explain the instability of

perceived depth order in Figure 7a: the two overlapping objects have interpolated contours of

very similar length.



cannot be separate mechanisms for the interpolation of contours in front of versus behind
other surfaces; illusory (i.e., in front) and occluded (i.e., behind) contours arise from the same
contour interpolation process.

In sum, both empirical studies and logical arguments indicate that contour
interpolation relies on a common mechanism that operates without regard to the final
determination of illusory or occluded appearance. The subjective appearance of interpolated

contours depends on mechanisms responsible for assigning relative depth, which lie outside
and sometimes operate subsequent to the interpolation process itself. In the discussion that
follows, we use studies of occlusion, illusory contours, and other contour-connection
phenomena interchangeably in examining the nature of the boundary interpolation process.

Empirical Studies of Boundary Interpolation.  A variety of experimental studies support
relatability as a formal description of the boundaries interpolated by the visual system
(Kellman & Shipley, 1991; Shipley & Kellman, 1992a). Some of the best evidence comes
from an elegant paradigm introduced by Field et al. (1993) for the study of contour
integration. The stimuli in these experiments consisted of arrays of spatially separated,
oriented Gabor patches, which are small elements consisting of a sinusoidal luminance pattern
multiplied by a Gaussian window; a Gabor patch closely approximates the ideal stimulus for

the oriented receptive fields of V1 simple cells. In some arrays, twelve elements were aligned
along a straight or curved “path,” constructed by having each element in the sequence differ
by a constant angle from its neighbors (0˚ for a straight, collinear path; ±15˚, for example, to
create a curved path). The remainder of the array consisted of elements oriented randomly
with respect to one another and the path, creating a noisy background. In the experiments,
observers judged which of two successively and briefly presented arrays contained a path.

The results of Field et al.’s (1993) experiments strongly support the notion of
relatability. When the positional and angular relations of successive path elements satisfied
the relatability criterion, observers detected the stimulus efficiently. Contour detection
performance declined gradually as the orientation difference between elements increased,
falling to chance at around 90˚. Moreover, complete violations of relatability, accomplished

by orienting the elements perpendicular to the path rather than end-to-end along it, resulted in
drastically reduced task performance. Together, these data suggest that interpolated contour
connections require specific edge relationships, the mathematics of which are captured quite
well by the notion of relatability. Moreover, interpolated contours become salient, allowing
them to play a meaningful role in higher-level object perception processes.

In addition to degree of curvature, the strength of boundary interpolation depends on
the relative extents of the physically-specified edges and gaps in a scene. Interpolation
strength appears to be a linear function of the support ratio, the proportion of total edge length
that is physically-specified, as opposed to interpolated. This relationship holds over a wide
range of display sizes (Lesher & Mingolla, 1993; Ringach & Shapley, 1996; Shipley &
Kellman, 1992b). In essence, the support ratio idea makes precise a version of the Gestalt law



of proximity: nearer elements are more likely to be grouped together.
Recent work by Geisler, Perry, Super, and Gallogly (2001) further suggests that

relatability may capture certain spatial relationships between visible contours that have a high
probability of belonging to the same object. Through an analysis of contour relationships in
natural images, Geisler et al. found that the statistical regularities governing the probability of
two edge elements co-occurring correlate highly with the geometry of relatability. In other

words, two visible edge segments associated with the same contour meet the mathematical
relatability criterion far more often than not. In sum, the success of relatability in describing
perceptual interpolation processes may derive from ecological regularities that characterize
the natural environment.

Surface Interpolation

The boundary interpolation process appears to operate without sensitivity to the
similarity of surface properties (Kellman & Loukides, 1987; Kellman & Shipley, 1991;
Shapley & Gordon, 1987; Shipley & Kellman, 1992a). Using a large sample of randomly
generated figures, Shipley and Kellman found evidence that object completion under
occlusion proceeds similarly whether relatable pieces are of the same or different luminance
and color. These data indicate that contour interpolation does not depend on the Gestalt
principle of similarity; relatability governs edge completions regardless of whether the
connecting regions are similar in luminance, spectral characteristics, or texture.2

This characteristic of boundary interpolation does not imply that surface similarity
cannot influence object completion. Kellman and Shipley (1991) described a surface
spreading process that complements boundary interpolation in the completion of partly
occluded objects. The process may be related to phenomena described some time ago in
retinal stabilization experiments (Yarbus, 1967; cf., Grossberg & Mingolla, 1985). Yarbus
presented displays containing a circle of one color surrounded by an annulus of a different
color. The boundary between the inner circle and outer ring was stabilized on the retina,
which caused it to disappear after several seconds. Following the disappearance of this
boundary, the color of the annulus (whose outer boundary was not stabilized) spread
throughout the entire circle.

                                                  
2 A few phenomena in the literature, especially an intriguing demonstration by He and Ooi

(1998), suggest that this conclusion may need to be qualified. Although the contour

interpolation process tolerates wide variation in the surface characteristics of the regions being

connected, there may be some constraints involving contrast polarity that we do not, as yet,

fully understand.



A similar surface spreading process may operate under occlusion (Kellman & Shipley,
1991). Surface qualities spread behind occluding edges; however, interpolated boundaries
confine the spread in much the same way as physically-specified boundaries. Figure 8
illustrates some effects of this surface spreading process.

In Figure 8a, both circles appear as spots on a background because their surface
qualities differ from other regions in the image. In Figure 8b, the right-hand circle still looks
much like a spot, but the left-hand circle is seen as a hole in the occluding surface. This
percept depends on the similarity between the surface lightness of the circle and the partly
occluded ellipse. Because the circle lacks TDs, its link to the ellipse cannot be attributed to
the boundary interpolation process. Surface spreading alone governs the perceived

connection. The fact that the right-hand circle retains its appearance as a spot indicates that
the interpolated boundaries of the partly occluded figure confine the surface spreading
process. Figure 8c illustrates that, in the absence of relatable edges, surface completion can
still occur; the left-hand circle appears as a hole, with its visible area linked to the visible half-
ellipse. For such cases, Kellman and Shipley (1991) proposed that the surface spreading
process is confined within an area partially bounded by the tangent extensions of the partly
occluded object (i.e., lines tangent to the visible contours at the points of occlusion). This idea
draws on the notion that, even in the absence of connection to other visible edges, contours
continue amodally for some distance behind occluders (He & Nakayama, 1994; Kanizsa,
1979). The right-hand circle of Figure 8c appears as a spot, rather than a hole, because it falls
outside the tangent extensions of the half-ellipse.

These observations and hypotheses have been confirmed in a series of experiments.
Using displays resembling those in Figure 8, Yin, Kellman, and Shipley (1997) tested whether
surface qualities spread within relatable edges and also within extended tangents of non-
relatable edges that continue behind occluders. For a number of displays with varying edge
and surface similarity relations, observers made a forced-choice judgment of whether a
circular area appeared to be a hole in a surface or a spot on top of the surface. If the data
suggested a “hole” rather than a “spot” percept, then Yin et al. (1997) assumed that the
surface properties of the partly occluded shape spread to the location of the test circle. The

(a) (b) (c)

F ig ur e 8 . So m e ef fects  o f  the s u rf ace inter p olation  p ro ces s: (a) no  su rf ace s pr ead in g ; (b ) s ur face sp reading  with in 
inter po lated  bo un dar ies; (c) su r face sp read ing  w ith in  am od ally co ntinu ed  bo un dar ies. See tex t fo r  d etails.



results indicated that observers tend to perceive the circle as a hole if and only if its surface
properties match those of the partly-occluded shape, and it resides either within relatable
edges (left-hand circle in Figure 8b) or within the tangent extensions of non-relatable edges
(left-hand circle in Figure 8c); a “spot” percept resulted if the circle’s surface properties
differed from that of the partly-occluded shape (Figure 8a) and/or if it fell outside of the
relatable edges (or non-relatable tangent extensions; right-hand circles in Figures 8b and 8c,

respectively). In a subsequent pair of experiments, Yin, Kellman, and Shipley (2000) studied
surface completion using an objective performance paradigm that pitted the effects of surface
completion against small amounts of binocular disparity in making a circle look like a hole
versus a spot. Results indicated that surface spreading inside of relatable edges reduced
sensitivity to contradictory disparity information; judgments of depth were not affected by
surface similarity in displays lacking relatable edges. Together, these findings strongly
suggest that surface spreading alone can lead to perceived connections under occlusion. The
surface interpolation process operates within relatable edges and also within the tangent
extensions of contours without relatable edges.

The characteristics of the surface spreading process may help to clarify some apparent
confusions regarding object completion phenomena. Tse (1999a, 1999b) created a number of

pictorial displays in which distinct regions appear to be connected despite a lack of relatable
edges. Tse argued that these displays disconfirmed contour relatability as an explanation of
interpolation and that a new notion of “volume completion” may be required. However, this
argument neglects the surface completion process, which operates separately from and
complements contour relatability (Kellman & Shipley, 1991). The rules of the surface
completion process, which previously have been experimentally supported (Yin, Kellman, &
Shipley, 1997, 2000), predict virtually all of the results reported by Tse (e.g., Experiments 1-5
in Tse, 1999a). Although Tse's data do not adequately separate a volume completion
hypothesis from the known effects of the surface spreading process, his question of whether
volumes per se (or 3-D contour and surface relations) play important roles in object formation
is an important one. We consider some experimental evidence on three-dimensional boundary

and surface interpolation (Kellman, Machado, Shipley, & Li, 1996; Kellman, Yin, Shipley,
Machado, & Li, 2001) in a later section.

In sum, surface spreading and edge relatability appear to play complementary roles in
object perception. Both the edge and the surface interpolation processes can, themselves,
specify connections under occlusion. Whereas contour interpolation establishes the shape of
an object’s boundaries, surface qualities (lightness, color, and texture) spread within real and
interpolated boundaries, and along their tangent extensions, to further specify other aspects of
the object’s appearance.

The Units Representation

One output of object perception processes may be a representation describing which



visible regions belong to the same object or surface. This output, the units representation, is

depicted in Figure 1. The motivation for a distinct units representation, independent of a

description of shape, comes from situations in which an object’s shape is wholly or partly

indeterminate. In Figure 9a, several fragmented regions of a surface are visible, but all of their

visible edges belong to occluding regions. The surface appears to have continuity, yet it is

shapeless. In the natural environment, the sky seen through trees mirrors this example. Figure

9b shows a case in which there is some visibility of object contours, but poor specification of

the overall shape. Nevertheless, the surface interpolation process reveals the unity of the

various dark areas.

When the visual system receives adequate shape information, unity and shape may be

encoded together. However, we suggest that shape descriptions ordinarily presuppose a

representation of unity.

The Shape Representation

Description of object shape is one of the most important results of object perception

processes. The exact nature of shape descriptions in the brain remains an unsolved problem. It

appears that shape descriptions are true 3-D representations, or at least incorporate viewer-

relative variations in depth, as in Marr’s 2.5-D sketch (Liu, Kersten, & Knill, 1999; Marr,

1982).

A stronger commitment can be made, we believe, regarding what receives a shape
description: In ordinary perception, the visual system assigns shape descriptions to unitary

(a) (b)

Figure 9. In (a), we perceive a unitary black surface despite a complete absence of shape information. In (b),
surface spreading gives the unity of the partly occluded surface.



objects. A connected surface whose overall boundaries are indeterminate may also receive a
limited shape description, as may the natural parts of objects. However, the visual system
does not naturally assign shape descriptions to regions that encompass parts of separate
objects. Moreover, visible regions, as opposed to natural parts of objects, do not automatically
receive shape descriptions, although they can be recovered, with effort, from the visible
regions representation. These claims — that shape descriptions are automatically given to

objects but not to arbitrary arrays — have interesting and testable empirical consequences
regarding object recognition and perceptual classification.

Having considered the various processes and representations involved in object

perception, we turn now to neural models of three specific processes: contour and junction

detection, contour integration, and contour interpolation.

NEURAL MODELS

Whereas geometric and process models aim to capture the stimulus relationships and

information processing operations that determine contour and object perception, neural models

emphasize how these computations can be carried out by neural circuitry. To date, no

comprehensive neural model exists to perform the multitude of tasks involved with object

perception, diagrammed in Figure 1 and discussed in relation to geometric and process

models. Existing neural models differ in which subset of object perception tasks they address.

In this section, we will describe three neural-style, computational models that perform
specific information processing tasks necessary for object perception. The first, by Heitger,

Rosenthaler, von der Heydt, Peterhans, and Kübler (1992), extracts edge segments, lines, and
junctions from a two-dimensional scene. This model builds upon the one-dimensional feature
detection model of Morrone and Burr (1988), extending the edge- and line-detection
algorithms into the second dimension, and adding operators that detect discontinuities
(junctions) explicitly.

The other two models describe the integration of elements across space to form
meaningful edges and contours. The model of Yen and Finkel (1998) implements a contour
integration algorithm, by which spatially distinct contrast elements (Gabor patches) are bound
together to form an extended contour. The model of Heitger, von der Heydt, Peterhans,
Rosenthaler, and Kübler (1998) performs boundary interpolation, constructing a contour

across gaps in the physical stimulus. Although these models differ substantially in their
structure and architecture, a deeper examination shows that they share many common
characteristics, albeit differently implemented.

All of these models employ the functional architecture of the earliest visual cortical
areas; their building blocks resemble known neural units. As its starting point, each model
postulates a set of linear filters with responses similar to those of the simple cells of primary
visual cortex (V1). These units each respond to local stimulus contrast of a particular



orientation and spatial frequency. The filters come in pairs, one member of which has an
even-symmetric receptive field, and the other an odd-symmetric receptive field. Although
slightly different representations of the filters are used by the different authors, they extract
essentially equivalent information from the stimulus. At this point the models diverge,
combining filter responses in different ways to extract the desired information.

Edge and Junction Detection: Heitger et al. (1992)

The detection and location of contour terminations and junctions represents an
important early step in identifying objects in the scene. Although numerous models exist for

edge detection, relatively little computational work has addressed the neurophysiological
mechanisms involved in the detection and classification of junctions. One promising approach
to this problem emphasizes the importance of end-stopped cells — neurons triggered by the
termination of an edge in their receptive fields (Heitger et al., 1992; Peterhans & von der
Heydt, 1991, 1993; Peterhans, von der Heydt, & Baumgartner, 1986). Heitger et al. (1992)
constructed their edge and junction detection model to be roughly concordant with
physiological evidence from areas V1 and V2 in the monkey. Figure 10 shows the basic
architecture of the model, along with its extensions in Heitger et al. (1998).

The model’s implementation begins with filters known as S-operators, the functional
organization of which closely resembles the simple cells of primary visual cortex (Hubel &
Wiesel, 1968). The model postulates six pairs of S-operators at each location, oriented 30º

apart. These filters approximate odd-symmetric and even-symmetric Gabor functions, but are
adjusted to eliminate any response to homogenous fields. These odd- and even-symmetric
operators commonly are conceptualized as bar and edge detectors, respectively, but this
characterization is oversimplified because they do not give unambiguous responses to lines
and edges (Morrone & Burr, 1988). Thus, determining the nature of the detected feature
requires an explicit comparison of the S-operator outputs.

In the second stage of the model, C-operators, analogous to complex cells, collect the
responses of the even and odd S-operators. The C-operators determine the “local energy”
within an orientation channel (Morrone & Burr, 1988), calculated as the root-mean-square
average of the responses of the S-operators:

C S Sodd even= +2 2

C-operators, like complex cells, respond to any appropriately oriented edge or line within
their receptive fields, and do not differentiate bright lines from dark ones. In essence, C-
operators localize oriented luminance discontinuities, without regard to their nature.

Information about whether a detected feature is a line or an edge can be recovered by
comparing the relative responses of the even- and odd-symmetric S-operators that served as
inputs.



The third stage in the model combines the output of the C-operators to form end-

stopped operators. These operators, analogous to V1 and V2 end-stopped cells, provide an
explicit representation of edge and line terminations, corners, and strongly curved contours.
End-stopped operators are constructed by taking differences in output between two or three
identically oriented C-operators, displaced along the axis of orientation (Figure 11).

There are two types of end-stopped operators. The single-stopped operators have one
excitatory and one inhibitory zone, constructed by taking the difference in the responses of
two identical C-operators, positioned end to end (Figure 11a). These operators respond
maximally to a line along the orientation of the operator that terminates between the two
zones. The double-stopped operators have inhibitory zones on either side of a central
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Figure 10. Architecture of the Heitger et al. (1992) and Heitger et al. (1998) models. The early model

implements the stages through the end-stopped (ES) operators and the extraction of the key points; the later
model describes the grouping of points and the extraction of contours. Redrawn from Image and Vision

Computing, 16, Heitger, F., von der Heydt, R., Peterhans, E., Rosenthaler, L., & Kübler, O., Simulation of

neural contour mechanisms: Representing anomalous contours, pp. 407-421, Copyright 1988, with
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excitatory zone; the inputs are weighted so that the flanking C-operators, when summed
together, precisely match the central C-operator (Figure 11b). Double-stopped operators
respond best to a small disk. As with the S- and C-operators, the model includes end-stopped
operators oriented every 30°.

The usefulness of the end-stopped operators for highlighting 2-D image features is

limited by their responses to extended lines that pass obliquely through their receptive fields
(dashed lines in Figure 11). To minimize these responses, Heitger et al. (1992) proposed a
system of horizontal inhibition that suppresses signals to such off-axis stimuli. The end result
is a system of operators that respond specifically, with very few false alarms, to endpoints of
lines, corners of objects, and regions of strong curvature.

As its final step, Heitger et al.’s (1992) model identifies key points, defined as
locations where the summed response of the single- and double-stopped operators reaches a
local maximum. In simulations, these key points corresponded well to the endpoints and
junctions of lines and edges. Heitger et al. hypothesize that the key points, many of which
arise from the occlusion of one edge by another, play a critical role in initiating edge
interpolation processes (see also Kellman & Loukides, 1987; Shipley & Kellman, 1990).

Once the key points are located, their characteristics are defined by the relative
responses of the two types of end-stopped operators. That is, different types of features (end-
points, corners, curves) produce different characteristic response patterns across the single-
and double-stopped operators. In general, the double-stopped operators identify the tangents
to sharply curved edge segments. By contrast, the single-stopped operators indicate the

+

+
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Figure 11. End-stopped operators constructed by taking differences in the responses of identically-oriented

C-operators: (a) single-stopped operator; (b) double-stopped operator. Positive input is indicated by “+”, and

negative input is indicated by “–”; these inputs have balanced weights. Dotted lines depict an off-oriented
stimulus that could stimulate the central receptive field without stimulating the inhibitory zones, thus causing

the operator to respond to a long line or edge. Redrawn from Vision Research, 32, Heitger, F., Rosenthaler,
L., von der Heydt, R., Peterhans, E., & Kübler, O., Simulation of neural contour mechanisms: From simple to
end-stopped cells, pp. 963-981, Copyright 1992, with permission from Elsevier Science.



direction of a terminating edge. Thus, at a T-junction, the single-stopped operators pointing in
the direction of the T’s “stem” would respond, but those oriented along the “roof” would be
silent. At a corner, however, the single-stopped operators would signal the orientations of
both edges converging at that point. Therefore, the relative responses of the various end-
stopped operators provide useful information, not just for locating junctions, but also for their
classification.

Heitger et al.’s model has several strengths that make it a plausible depiction of
contour and junction detection. First, all of the hypothesized operators have clear correlates in
the human visual system: S-operators correspond to simple cells, C-operators to complex
cells, and end-stopped operators to end-stopped cells. Second, the responses of these operators
build upon one another in ways that are similar to hypothesized interactions in early human
vision (Gilbert, 1994; Hubel & Wiesel, 1968). Third, casual inspection of simulation output
suggests a strong correspondence between perceived features and activity in the various
operators. It should be noted, however, that Heitger et al. did not compare the model’s output
to any psychophysical data, although they presented results for two test images. Further study
is needed to assess the model’s performance on real-world, noisy images and its agreement
with human perceptual processing.

A second limitation of the Heitger et al. (1992) model involves what happens after the
filtering described. The model yields maps of local image features: an edge map, comprised
of the locations of significant activity in the C-operators, and a map of key points. In effect, it
implements the edge and junction detection box depicted in Figure 1. However, it does not
describe how this information is combined or integrated into the perception of contours. This
issue is addressed in the other models we discuss: that of Yen and Finkel (1998) and Heitger
et al. (1998).

Contour Integration: Yen and Finkel (1998)

Perceiving objects requires that, at some level of visual processing, each object’s
boundary is represented explicitly as a connected, unified entity. Several familiar phenomena
support this claim. For example, in reversible figure-ground displays, the contour between
two regions tends to switch its boundary assignment as a unit, not piecemeal. The
construction of higher-level contour units — beyond local orientation responses — requires

linking together the products of many of the kinds of operators we have already considered.
We do not yet fully understand how a contour token (or a unitary object, for that

matter) is realized by neural activity. In recent years, however, both neurophysiological and
psychophysical studies have provided suggestive clues. Specifically, evidence suggests the
existence of extensive horizontal connections among neurons at early stages of visual
processing (e.g., Kapadia, Ito, Gilbert, & Westheimer, 1995; Polat & Sagi, 1993, 1994; Ts’o,
Gilbert, & Wiesel, 1986). Importantly, a majority of these interactions occur between neurons
with similar orientation preferences; this means that neurons responding to different regions



of a smooth, continuous contour may “speak” to one another, and thus process the contour as
a whole. Neurophysiological research further suggests that the association among like-
oriented neurons may be achieved via correlated firing patterns, or neural synchrony, in
addition to a simple facilitation of activity (Livingstone, 1996; Ts’o et al., 1986).

Yen and Finkel (1998) proposed a model that accounts for contour integration and
perceived contour salience by temporal synchronization of responses in a network of

interconnected units akin to oriented cortical cells. The basic processing units of the model,
which represent the output of oriented V1 cells, are pairs of linear steerable filters, one with
an even-symmetric receptive field and the other with an odd-symmetric receptive field.
Although the implementation differs, the combined responses of these units bear a strong
similarity to the responses of the C-operators in Heitger et al.’s (1992) model.3

The responses of the basic processing units are modified by long-range horizontal
connections; the sign and strength of the neural interactions depend jointly on the relative
location and orientations of the two interconnected cells. The model’s processing utilizes
three sets of horizontal connections. The primary facilitatory connections, termed co-axial,
closely resemble the association field hypothesized by Field et al. (1993), with linkages
spreading out in circular arcs from the orientation axis of the neuron (Figure 12). For these

connections, association strength decreases rapidly with increasing distance, curvature, and as
local orientation deviates from the relevant circular arc. A second set of facilitatory
connections entails interaction between cells with parallel receptive fields (see Figure 12); the
strengths of these trans-axial connections also fall off rapidly with distance and deviation
from the preferred orientation. In the model, the co-axial and trans-axial connections compete,
so that only one set can be active in a given unit at a given time.

The third set of horizontal interactions operates during a second stage of processing,
becoming influential only after the facilitative activity has stabilized. The inhibitory
connections suppress the responses of all units whose total facilitation from other active units
falls below some threshold. This inhibition helps to distinguish the contour signal from
background noise by minimizing the responses of cells that are facilitated by accidental

alignment of unrelated contour elements.
In Yen and Finkel’s (1998) model, contour integration depends on synchronization of

neural units responding to interrelated contour segments. According to the model, the activity
of strongly facilitated neurons begins oscillating over time, which allows them to synchronize
with other similarly oscillating cells. Initially, these “bursting” cells oscillate with a common
temporal frequency but different phases. Over time, the phase of each oscillating neuron is

                                                  
3 One difference might be the fact that, due to the nature of the steerability computation, only

the “preferred” edge orientation for a given location survives in the output representation of

Yen and Finkel’s (1998) model; in Heitger et al.’s (1992) model, activations in the various

orientation channels all contribute to the derived edge map. Freeman and Adelson (1989) offer

useful insight into the computational advantages of steerable filters.



modulated by the phase of the oscillators with which they are associated; the strengths of
these phase modulations mirror the strengths of the facilitatory connections between the two
cells. The oscillations between bursting cells with strong, reciprocal, facilitatory connections
rapidly come into phase, and neural synchrony is achieved. The model assumes that a set of
commonly oscillating cells leads to the perception of a meaningful contour (although no
particular mechanism is provided to extract this information), and that different contours
synchronize independently so that they are perceived as separate entities. Yen and Finkel
further proposed that the perceptual salience of a contour equals the sum of the activity of all
synchronized cells, such that long contours (which activate more units) become more salient
than shorter contours.

Yen and Finkel (1998) compared the simulations of their model against a range of

psychophysical data, with generally positive results. Importantly, the model achieved all of its
successes using a single set of parameters. Among the observations for which the model can
account are the findings that closure enhances the visibility of smooth contours (Kovács &
Julesz, 1993; Pettet, McKee, & Grzywacz, 1998), and that contrast sensitivity to an oriented
target is enhanced by the appropriate placement of like-oriented flanking stimuli (Kapadia et
al., 1995; Polat & Sagi, 1993, 1994).

Even more importantly, Yen and Finkel’s model can simulate effectively the contour
integration data provided by the experiments of Field et al. (1993). Specifically, the results
suggested that the ability to detect a contour consisting of spatially distinct Gabor patches
decreases with increasing path curvature, increasing distance between successive elements,
and increasing deviation of local orientation from the overall contour path. The model’s

performance correlated highly with human data across all of these stimulus manipulations.
Yen and Finkel’s model is distinguished from other contour integration models in its

use of temporal synchronization to determine contour salience. An alternative approach, in

Figure 12. Connectivity pattern of a horizontally-oriented cell, located at the center of the image. At each
given location, the “preferred” orientation of the connection is represented by the orientation of the line, while

the length of the line is proportional to connection strength. Reprinted from Vision Research, 38, Yen, S. C.,
& Finkel, L. H., Extraction of perceptually salient contours by striate cortical networks, pp. 719-741,
Copyright 1998, with permission from Elsevier Science.



which salience depends solely on facilitation of neural activity (Pettet et al., 1998), also can
explain several psychophysical effects. However, whereas a synchronization model might
represent separate contours by synchronizing each neural population independently, activity-
based models may experience some difficulty in representing multiple contours as
independent entities, especially when the contours in question occupy neighboring regions of
space.

In sum, Yen and Finkel’s (1998) model provides a dynamic binding scheme for
contour integration — combining information across receptive fields sensitive to different
regions of space. This model complements nicely the junction detection algorithms proposed
by Heitger et al. (1992). Both models begin with the same type of information: activity in
units akin to V1 complex cells. However, whereas Yen and Finkel focus on representing
connected contours explicitly, Heitger et al. concentrate on the detection of object-relevant
junctions (key points). As both of these tasks play important roles in the object perception
process, an integration of the two approaches into a single processing scheme would represent
a clear advance in the development of a thorough model of early human vision.

It should be noted, however, that this general approach to contour and junction
processing limits its focus to luminance edges. As discussed earlier, edge detection, in reality,

depends on multiple inputs; discontinuities in color, texture, stereoscopic depth, and motion
all can lead to the perception of an occluding edge. Our understanding of both junction
detection and contour integration may benefit from an attempt to extend existing algorithms to
non-luminance edge inputs.

Another limitation of Yen and Finkel’s (1998) model is that it is set up to work at one
level of spatial scale. In fact, the model not only filters at a single level of scale, but also
restricts the stimuli for its simulations to Gabor patches of one size. We consider the issue of
single versus multiple-scale filtering in relation to this and other models below.

An additional avenue for future research involves applying the contour integration
mechanisms proposed by Yen and Finkel (1998) to the problem of contour interpolation.
Considerable behavioral and neurophysiological evidence suggests a common representation

of physically-defined and illusory contours at some levels of visual processing (e.g., Dresp &
Bonnet, 1995; Dresp & Grossberg, 1997; Greene & Brown, 1997; Peterhans & von der Heydt,
1989; von der Heydt & Peterhans, 1989). Moreover, the co-axial facilitatory connections used
in the contour integration model correspond nicely to the geometric requirements for edge
interpolation proposed by Kellman and Shipley (1991).

In its current state, Yen and Finkel’s (1998) model cannot account for the perception
of interpolated contours. In short, the model assumes that the facilitatory connections are
modulatory in nature, meaning that a neuron cannot become active through lateral interactions
alone. Because the facilitatory interactions are effective only for neurons with luminance
contrast within their receptive field, the units in Yen and Finkel’s model could not respond to
an illusory or occluded contour. This assumption is appropriate to a model of V1 interactions,

as neurons responsive to illusory contours probably do not exist at this cortical level



(Peterhans & von der Heydt, 1989; von der Heydt & Peterhans, 1989). However, similar
neurons exist in V2, where neurons do respond to interpolated contours. Therefore, it would
be interesting to determine whether lateral interactions similar to those envisioned by Yen and
Finkel, without the “modulation only” assumption, could explain the perception of illusory
and occluded contours.

Boundary Interpolation: Heitger et al. (1998)

As we noted, the Heitger et al. (1992) model extracts edge maps and key points from a
scene, but does not address how these outputs could be used to extract meaningful contours.

The boundary interpolation model of Heitger et al. (1998) builds upon these researchers’
earlier ideas about the detection of contours and key points (Heitger et al., 1992). Figure 10
depicts the basic architecture of the model, including the processing stages originally
described by Heitger et al. (1992).

The goal of the interpolation model is to group together key points to establish
contours that are not specified by luminance contrast. The grouping algorithm is based on the
well-established idea that interpolated boundaries tend to begin and end at contour
discontinuities (e.g., Kellman & Shipley, 1991; Shipley & Kellman, 1990). In general,
grouping occurs when two single-stopped operators at key points fall in a specific spatial
arrangement.4

One form of grouping, referred to as para grouping, generates illusory contours such

as those seen in Figure 13a. When applied to the notched circles, the early stages of the model
detect all of the luminance-defined edges and generate key points at the discontinuities. The
lines extending from these points indicate the open-ended direction of the single-stopped
responses that generated the points. For two key points to become grouped together, the active
single-stopped operators must possess characteristics that match a particular grouping field.
For para grouping, the grouping field (depicted in Figure 13a along the lower contour of the
illusory figure) decreases in strength with distance from the origin and as orientation deviates
from the axis of the field; the lobular shape prevents the grouping of nearby, but unrelated,
key points. The grouping algorithm convolves this field with the responses of single-stopped
operators at the key points; if a sizeable response emerges, indicating that the single-stopped
outputs fell in the appropriate spatial relationship, then the key points become grouped. The

numerical value of this computation is assigned to the image point corresponding to the center
of the grouping operator. In the example in Figure 13a, each lobe of the para grouping field
contains a key point with a single-stopped response aligned along its axis, and a second
single-stopped response pointing orthogonal to it. The two aligned responses, when convolved

                                                  
4 The Heitger et al. (1998) model is elaborated in considerable formal and quantitative detail,

which makes its predictions explicit for particular stimulus inputs. In our discussion, we have

omitted much of this detail.
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with the field, produce a significant output and thus a high value at the central location of that
grouping operator. According to Heitger et al. (1998), this output forms the basis of illusory
contour perception.

The second form of grouping, referred to as ortho grouping, generates illusory
contours that run orthogonal to the inducing line-ends, as illustrated in Figure 13b. The
grouping algorithm parallels that described above, except that the ortho grouping field prefers

end-stopped responses oriented orthogonally to its axis. The key points in Figure 13b become
grouped via convolution with the ortho grouping field.

In the model, the grouping operators occupy the points of a grid, and at each point are
available at 30° orientation steps. Once the para and ortho grouping responses have been
determined, they are combined with the responses of the C-operators to luminance edges. The
final, perceived contours correspond to the maxima in the combined representation of the
C-operator and grouping output. For the displays in Figure 13, this combination generates an
output image that includes both the real contours and the illusory contours typically perceived
by human observers.

In addition to contour interpolation, the grouping mechanisms contribute to the
process of boundary assignment. Figure-ground determination arises from the assumption that

most key points with end-stopped responses approximately orthogonal to a contour result
from occlusion; therefore, the terminating contours that give rise to these key points are
assumed to fall on a background surface. Thus, the model compares the responses of end-
stopped operators sensitive to one direction of termination with the responses of like operators
sensitive to the opposite direction; the side of the contour with the line-ends producing the
greater end-stopped response is assigned as “background,” and the other side of the contour is
deemed “foreground.”

To summarize, Heitger et al.’s (1998) model builds from simple units a relatively
complex processing scheme that can interpolate contours and determine boundary assignment.
When applied to scenes, the model shows some ability to connect the contours of objects that
have been occluded by other objects and to distinguish the occluding objects by enhancing

contours of low contrast.
The Heitger et al. (1998) model successfully performs contour interpolation using a

reasonable architecture for neural processing. The model’s basic processing units correspond
to neurons known to exist at early stages of cortical visual processing: simple, complex, and
end-stopped cells. To accomplish the higher-level tasks (boundary assignment and contour
interpolation), the model combines the responses of these basic units in neurally plausible
ways. For example, the grouping response depends on a multiplicative “AND” operator.
Evidence for such an operator has been found in electrophysiological studies, in which
contour-sensitive neurons in area V2 responded when two luminance-defined edge elements
flanked its receptive field, but not when either element appeared alone (Peterhans & von der
Heydt, 1989).

Interestingly, there is a high degree of similarity between the shape of the grouping



fields in Heitger et al.’s (1998) model and the geometry of horizontal interactions proposed by
Yen and Finkel (1998) for contour integration. The shape of the para grouping field closely
mirrors the co-axial connections for integration, whereas the shape of the ortho grouping field
resembles the trans-axial connections. As previously discussed, several lines of evidence
converge on the possibility of a common mechanism for the perception of physically-
specified and interpolated contours (e.g., Dresp & Bonnet, 1995; Dresp & Grossberg, 1997;

Greene & Brown, 1997; Peterhans & von der Heydt, 1989; von der Heydt & Peterhans, 1989).
Therefore, although very different implementations characterize the two models, the
similarity in shape of the grouping fields for contour interpolation (Heitger et al., 1998) to the
horizontal connections for contour integration (Yen & Finkel, 1998) fits well with our
geometric understanding of these perceptual processes.

Heitger et al.’s (1998) model, however, is not without its limitations. For one, some of
the operators appear to have been designed to produce a particular result, with little theoretical
or empirical justification for either their existence or their nature. Second, the grouping
process depends on some complex weighting structures for cross-orientation inhibition (not
discussed above), necessary to suppress grouping when signals of multiple orientations exist
in a single location. Despite the overall neural plausibility of the model, the proposed

weightings may be difficult to implement in simple neural circuitry. Some other issues of
more general significance, such as the relation of the Heitger et al. (1998) model to the
perception of partly occluded contours, are taken up in the next two sections.

ISSUES FOR GEOMETRIC AND NEURAL MODELS

As we have seen, recent work has led to an understanding and quantification of the
spatial relations crucial for object perception, as well as the development of neural-style
models of some underlying processes. This progress raises a number of important issues for
future work. Some involve unsolved problems within the domains addressed individually by

geometric or neural models. A number of other issues involve connecting these two types of
models. We consider some important examples of each type below. First, we address
problems intrinsic to neural models, in their current instantiation. Next, we consider
connections between geometric and neural models, emphasizing knowledge about geometry
and processes that could be, but have not yet been, implemented in neural-style computational
models. In a final section, we examine the frontier in research on geometric models:
phenomena that suggest the need for major changes or additions to all current models in order
to capture key aspects of object perception.

Neural Models of Contour Processes: Issues and Challenges

Contour Interpolation: Higher-Order Operators vs. Network Models. How does the nervous
system carry out contour interpolation across gaps in the input? The model of Heitger et al.



(1998), considered above, addresses this question directly. In this model, real edge inputs on
either side of a gap feed into nonlinear, higher-order grouping operators. The activation of
these operators, centered over a discontinuity in edge input, may be used to define an illusory
contour existing across the gap.

Alternatively, interpolation may be carried out by an interactive network of
orientation-signaling units (e.g., Field et al., 1993). According to this idea, luminance-defined

edges activate some oriented units, leading to facilitative interactions with other units that do
not receive direct stimulus input. Interpolation occurs when a path of units, defined on either
end by directly-stimulated units, becomes active as the result of these interactions. Although
the model of Yen and Finkel (1998) prohibits the activation of units that receive no direct
stimulus input and thus cannot perform contour interpolation in its current state, its network
architecture is highly compatible with this general concept of interpolation.

Can existing data determine which approach to interpolation — or perhaps what
combination of network interactions and higher-order operators — is correct? We doubt that
this issue can be decided from present knowledge. Each approach presents some clear
advantages along with some equally obvious difficulties.

One advantage of the higher-order operator approach involves its apparent consistency

with certain perceptual and neurophysiological findings. Heitger et al. (1998) note that single-
cell recording data from area V2 of the macaque indicate that cells responding to illusory
contours combine the inputs of two adjacent areas multiplicatively (Peterhans & von der
Heydt, 1989). In other words, neurons signaling illusory contours cannot be activated without
real contour activation on both sides of the gap. This finding fits nicely with the perceptual
fact that noticeable illusory contours do not arise from a single inducing element. Moreover,
psychophysical work suggests that thresholds for detecting low-contrast, oriented stimuli
decrease when co-axial stimuli appear on both sides, but not when a single flanking stimulus
is presented (Polat & Sagi, 1993).

All of these findings may be explained by the existence of higher-order operators that
group like-oriented stimuli and facilitate interpolation. Alternatively, the results could be

captured by a network model that requires facilitation from units on both sides to produce an
above-threshold response in intermediate neurons. Indeed, in suggesting that the thresholds of
intermediate units can be affected by flanking stimuli (Polat & Sagi, 1993), the work on
lateral interactions seems more consistent with a network-style model than with a higher-
order operator model. Nonetheless, further research is needed to distinguish the approaches.

A potential drawback of higher-order operators involves curved interpolations, which
occur readily in perception. In the Heitger et al. (1998) model, interpolation of collinear edges
depends on the para grouping process. Para grouping utilizes collinear grouping fields to
specify whether an interpolation should occur at each image point; non-collinear grouping
fields are not envisioned within the Heitger et al. model. As a result, points along mildly
curving illusory contours can produce non-zero interpolation responses only if both inducing

edges fall at least partially within the grouping fields of a collinear operator. Thus, this



scheme could interpolate between two input edges whose relative orientations are
approximately 150˚ to 180˚. By contrast, psychophysical research suggests that interpolated
contours may be induced by edges whose relative orientations fall between 180˚ (collinear)
and 90˚ (Field, Hayes, & Hess, 1993; Kellman & Shipley, 1991). The para grouping
mechanism of Heitger et al. cannot easily account for curved interpolations in illusory and
occluded contour perception.

The Heitger et al. (1998) model does allow for non-collinearity in the ortho grouping
process. For this process, recall that illusory contours arise from appropriately oriented line
ends, and that interpolation orthogonally to the line ends specifies an occluding contour. At
line ends, the authors argue, the exact orientation of the occluding contour may be poorly
specified; hence, the model’s operators allow 30 degrees of orientation change between
adjacent inducers. Though these operators could produce appropriately curved interpolated
contours, they seem somewhat ad hoc when one considers the context in which they are
introduced. Even more problematic, the introduction of similar units into the para grouping
process likely would cause an unrealistic proliferation of the number of higher-order operators
necessary to account for the varied, possible curvatures of perceptible interpolated contours.

This limitation in accounting for curved interpolations can be overcome by appealing

to network-style models. By recruiting intermediate units along various curved paths,
network-style models can interpolate curves without necessitating the introduction of an
unwieldy number of operators. As previously suggested, Yen and Finkel’s (1998) model for
the integration of visible contours may be extended to contour interpolation simply by
allowing facilitative interactions among intermediate units in the absence of direct stimulus-
driven activation.

Nevertheless, network-style models also have drawbacks. Whereas contour integration
conceivably could depend solely on facilitative interactions among V1 neurons, the network
interactions responsible for illusory and occluded contours arguably must require an
additional layer or network. Simply put, interpolated contours can be distinguished easily
from visible edges, despite their perceptual status as real contours that connect under

occlusion. If real and interpolated contours depended on identical network computations, with
neural units activated either by direct stimulus inputs or lateral interactions, then it becomes
difficult to see how occluded and “visible” contours could be distinguished. An arrangement
in which V1 inputs feed into a separate network layer could handle this problem; information
about stimulus-driven activations could be preserved in the earliest layer, whereas
interpolated contours could be computed in the next.

Another computational task that may be harder for network models than for higher-
order operators involves enforcing monotonicity. Research indicates that interpolated
contours bend in one direction only (Kellman & Shipley, 1991); this monotonicity constraint
effectively rules out, beyond a very small threshold tolerance, doubly inflected contour
interpolations. Evidence suggests that interpolation breaks down when initially collinear

edges are misaligned by more than about 10 or 15 minutes of visual angle (Shipley &



Kellman, 1992a).
The difficulty with enforcing monotonicity in a simple network of interactions,

illustrated in Figure 14, arises from the fact that an intermediate neuron could be facilitated by
two flanking neurons that would not facilitate one another. Figure 14a shows a luminance
edge with excitatory connections branching outward to approximately ±45˚. Two such edges,

displaced horizontally and vertically, are shown in Figure 14b. Note that an intermediate unit
(shown as a dotted gray segment) between the two stimulus-driven units should, according to
a simple network model, be facilitated by both. Nonetheless, such misaligned inputs do not
support interpolation (Figures 14c and 14d). Therefore, network models must use some
scheme to exclude formation of an interpolated edge between two such inputs.

The point to be distilled from much of the foregoing discussion is that there are
computational tradeoffs between models that use higher-order operators and models that
perform interpolation in a network of interacting, oriented units. The ability of units in a
network to link up in different ways is a strength: it provides the model with flexibility. On
the other hand, the fact that contours are encoded over a number of neurons, each of which
“knows” only about its own activity, raises a problem of labeling or identifying the emergent

structure. (There is, after all, no homunculus looking at the network’s output.) In higher-order
operator models, an operator’s output can be easily labeled for further processing based on its
nature and location. At the same time, the flexibility needed for finding varied image
properties, such as contours of various curvatures, may require unreasonable proliferation of
operator types. Further research may reveal that both processing strategies, operating at
different levels, combine to perform basic computations in object perception.

Multi-Scale Filtering. In the natural environment, images contain significant contrast
variations at different spatial scales. Consequently, numerous researchers have suggested that
visual processing requires the integration of information across multiple spatial frequency

(a) (b) (c) (d)

Figure 14. An illustration of the monotonicity problem. A simple network scheme (a and b) cannot easily

enforce the monotonicity constraint: the notion that interpolated contours cannot be doubly-inflected (c and

d). See text for details.



channels (e.g., Marr & Hildreth, 1980; Morrone & Burr, 1988).
The neural-style models we have considered all utilize a single level of scale. By

contrast, a number of tasks in object perception appear to require multiscale modeling. For
example, consider the problem of distinguishing meaningful edges from noise. Because many
occluding edges involve abrupt changes between regions with different properties (e.g.,
luminance, color, texture, motion and/or depth), they will produce activation at the same

location in channels at different spatial scales. Similarly, edge classification (e.g.,
distinguishing between an occluding edge and a shadow) often may be accomplished using
multiscale information. A shadow’s penumbra, for example, involves a gradual luminance
change over space; this might activate a low spatial frequency detector strongly, but a high
frequency detector only minimally.

Similar considerations may apply to the detection and classification of junctions. For
example, low spatial frequency filters may explain our ability to recognize a square with
rounded edges as a square; by contrast, our ability to distinguish squares with rounded corners
from those with sharp corners might depend on high spatial frequency operators. Low spatial
frequency filters may miss important details, whereas high spatial frequency filters often
cannot distinguish meaningful information from noise.

As discussed earlier, tangent discontinuities play a crucial role in initiating the contour
interpolation process. For effective interpolation, filtering on a fine scale seemingly would be
crucial for distinguishing actual TDs from regions of high curvature; however, filtering at a
coarse scale also is important for excluding the responses of fine junction filters to local noise.
By integrating over multiple spatial scales, true junctions may be accurately disambiguated
from other possibilities (Marr & Hildreth, 1980; Watt & Morgan, 1985; Witkin, 1983).
Incorporating edge and key point detection at multiple levels of scale, as well as elaborating
algorithms for integrating information across different spatial frequency channels, are
important goals for future work.

Output Representations. Figure 1 set out an overall framework of tasks and processes required
for object perception. In this context, it is important to review what actually has been

accomplished by the neural models we have considered. Heitger et al.’s (1992, 1998) models
seek to locate edges and junctions (key points), and to interpolate illusory contours between
visible edges. The models’ outputs, which come from convolution operations, consist of
numerical values assigned to two-dimensional image coordinates. These output maps may be
viewed as images themselves. Upon inspection, one can see the locations of edges, junctions,
or illusory contours.

With these sorts of outputs, it is easy to become confused about what a model has and
has not accomplished. When viewing an output “image,” we bring along our own grouping
and segmentation routines, and we may suppose that the image contains bounded objects.
Crucially, however, the final representations in the Heitger et al. models (1992, 1998) do not
represent explicitly any linked contours, any units, or any shapes in the scene.



How are the maps produced by Heitger et al.’s (1992, 1998) filters used to segment
and group contours and objects? These issues remain to be modeled. Yen and Finkel’s (1998)
work suggests a useful algorithm for one necessary task — that of integrating local edge
responses into a meaningful contour. Further research is needed to determine how the visual
system might develop the other symbolic representations required for object perception.
Besides visible contour tokens, these include representations of visible regions, interpolated

edges, units, and shapes.

Connecting Geometric and Neural Models

The Common Interpolation Mechanism for Occluded and Illusory Contours. In discussing a
geometric model of contour interpolation, we described findings and phenomena indicating
that a common contour interpolation process governs illusory and occluded contours. Most
importantly, we presented the argument that, in at least some cases (e.g., self-splitting
objects), contour interpolation logically must occur prior to the determination of modal
(illusory) or amodal (occluded) appearance. This need not always be the case; clear depth
order information is often available prior to interpolation. Cases in which interpolation occurs
prior to final depth ordering, however, unmask the fact that there cannot be separate
interpolation processes for contours that ultimately appear in front of, or behind, other
surfaces. Rather, the differing phenomenology of illusory and occluded contours derives from
depth ordering information that arises at various processing stages.

Most neural-style models have addressed either illusory or occluded contours, but not
both. For example, the model of Grossberg and Mingolla (1985) described the gap-filling
process as a means of surmounting occlusion by retinal veins, but not occlusion by nearer
objects. Accordingly, only modal contours could be interpolated by that model. (More recent
proposals by Grossberg and colleagues (e.g., Grossberg, 1994), however, may be more
compatible with the identity hypothesis.)

The interpolation model we have considered in some detail — that of Heitger et al.
(1998) — is interesting in this regard. This model is motivated, in part, by single-cell
recordings indicating that some V2 cells respond to illusory contours but not to comparable
occlusion displays (Peterhans & von der Heydt, 1989). Thus, the model is designed to account
for illusory, but not occluded, contours. For most occluded contours, the para grouping

process, which connects edge inputs of like orientation, would be blocked by contour junction
information on the occluding surface, which contradicts the existence of an illusory edge in
the foreground. Nevertheless, Heitger et al.’s simulations do produce interpolation responses
for some occluded contours, such as the partly occluded circles in the standard Kanizsa
triangle display. The authors consider the latter result to be something of an embarrassment; it
is described as “a limitation of the present model” (p. 414).

We believe that the model's responses need not be a source of embarrassment. As
described above, evidence implicates a common interpolation process for illusory and



occluded contours. Moreover, the process seems to be somewhat promiscuous. As we will
suggest below, the edge interpolation mechanism appears to create some contour connections
that never reach conscious perception; they are deleted based on contour junction and
boundary assignment information, as well as processes that require consistent depth order of
surfaces in a scene. Accordingly, a better fit to existing data is a relatively unconstrained
interpolation process, followed by both “gating” effects (that delete some contours) and depth
ordering effects (that lead to the differing illusory or occluded appearance). The model of
Figure 1 indicates this idea with an interactive connection between boundary assignment and
edge classification processes and the outputs of contour interpolation.

Do any single-cell recording data rule out such a scheme? It is worth noting that

Peterhans and von der Heydt (1989) did find cells in V1 that responded to both their illusory
contour and the related occlusion displays, although they ventured that these results may have
been artifactual. Another possibility is that the equivalent responses of V1 cells to illusory and
occluded contours indicate a common contour interpolation step, whereas the nonequivalent
responses of V2 cells indicate that depth information relevant to the final contour appearance
has come into play. At this point, we lack any sufficiently detailed mapping of computations
onto cortical layers to determine the probable location of cells carrying out the common
interpolation step.

Hopefully, it is clear why we have argued for a common interpolation step in object
formation. One other phenomenon underscores the difficulties of approaching interpolation
separately for illusory and occluded contours. Figure 15 illustrates interpolation in a situation

that fulfills the requirements for neither illusory nor occluded contours — the case of so-
called quasimodal objects.5 At each of four gaps in the figure, interpolation creates an edge

                                                  
5The term quasimodal is used to describe cases that fall in between amodal and modal
completion (the latter terms used by Michotte, Thines, & Crabbe, 1964, to describe

Figure 15. Example of a quasimodal object. The central white ellipse has interpolated contours at four
locations. Each connection links an occluded contour with an illusory contour. The effect is visible in each

image, but it is more vivid when stereoscopic disparity gives the appropriate depth relations. To obtain the

stereoscopic effect by free fusion, either cross-fuse the left and middle images, or diverge the eyes to fuse the
middle and right images. After Kellman, Yin, and Shipley (1998).



that is occluded on one end and illusory on the other. Kellman, Yin, and Shipley (1998)
studied quasimodal displays using an objective performance paradigm (the “fat-thin” method
of Ringach & Shapley, 1996) known to be sensitive to contour interpolation and found that
they provided virtually identical facilitative effects on classification performance as the
equivalent displays containing only illusory or occluded contours.

The model of Heitger et al. (1998) would not interpolate contours in quasimodal

displays. However, quasimodal contours present no special problem in our model. An
interpolated contour initially is constructed depending on the spatial relations of two visible
contours. However, the initial interpolation step does not determine the constructed contour’s
relation to other contours or surfaces in the scene. Thus, depth ordering processes
subsequently can place an interpolated contour either in front of or behind other surfaces,
depending on depth information about other objects in the scene and other interpolations (as
in Petter’s Effect). A quasimodal contour simply is an interpolated contour that, based on
these depth ordering influences, finds itself in front of some surfaces and behind others.

In sum, our analysis suggests that neural models must be elaborated in a way that
provides a common interpolation step whose outputs are subject to gating and depth ordering
effects that lead to a number of different perceptual outcomes. A model of illusory contour

formation alone, as proposed by Heitger et al. (1998) would leave open how unit formation
under occlusion — arguably the most important function of interpolation — could occur.
More importantly, however, our framework is most consistent with known phenomena, and
may offer some useful hints in the search for the neural substrates of interpolation.

Support Ratio. One well-established quantitative finding from research on contour
interpolation is the notion of support ratio (Banton & Levi, 1992; Shipley & Kellman,
1992b). Consider an interpolated edge to consist of two physically-specified segments (e.g.,
given by luminance contrast) and an intervening gap. Over a wide range of display sizes, up
to and perhaps beyond 10 degrees of visual angle, interpolation strength increases linearly
with support ratio — the ratio of physically-specified segments to total edge length
(physically-specified segments plus gap). Support ratio makes ecological sense as a property

influencing object perception in that it is scale invariant. For partly occluded objects, changes
in viewing distance leave support ratio unchanged, so long as viewing distance is large
relative to the depth separation of the occluding and occluded objects.

Support ratio is an example of a robust finding about the geometry of object
perception that is not implemented in current neural models of interpolation. For example, in
the Heitger et al. (1998) interpolation model, grouping operators have fixed retinal size, and

                                                                                                                                                              

interpolation of occluded and illusory objects respectively). The displays were initially
described as “hybrids,” with the alternative term quasimodal mentioned with tongue (pen) in
cheek. However, a unanimous vote of the reviewers of Yin et al. (1998) established
quasimodal as the preferred technical term.



therefore are not scale invariant. Due to the size and configuration of the operators, grouping
does produce similar shapes over a limited range of scales. However, it appears that some
changes in the operator would be needed to obtain results fully consistent with human
psychophysical data on support ratio.

Surface Interpolation. Earlier we described and illustrated the surface interpolation process
that operates under occlusion (e.g., Yin et al., 2000). No current neural-style models

incorporate this aspect of processing, which influences unit formation and object perception
more generally. Grossberg and Mingolla (1985) described complementary processes
involving contours and surface features, including a notion of surface spreading in modal
displays (e.g., in “neon” color spreading). The surface spreading process under occlusion may
be closely related to modal spreading phenomena, but the specifics remain unclear. Likewise,
the specific interactions of contour and surface processes found by Yin et al. (1997, 2000)
have not been implemented in terms of underlying neural units.

Geometric Models: Issues and Challenges

In the previous section, we considered discrepancies between the known geometry of
interpolation and current neural-style models. To conclude, we raise several challenges for
advancing geometric and process models of object perception themselves. These challenges
are of several different types. First, we consider one part of the geometry of contour
interpolation that is not fully understood: the misalignment of parallel contours. Next, we

consider issues regarding the relation of a contour interpolation processing stage to the final
appearance of contours. Then, we ask whether the relatively local, bottom-up model we have
suggested is adequate to accomplish object perception; in particular, we address the question
of top-down influences. Finally, in the last two sections, we consider findings indicating that
the domain of object perception models must be radically enlarged; specifically, models must
be broadened from the consideration of static, 2-D images to encompass 3-D and
spatiotemporal (motion-carried) information for object formation.

Contour Misalignment and Interpolation. An example of an unresolved problem in geometric
models is the problem of contour misalignment. Strictly speaking, the geometry of relatability
should not tolerate any misalignment of parallel (or co-circular) edges. As with the
application of any mathematical concept to perceptual processing, we would expect that the

notion of alignment is not absolute; that is, there should be some small tolerance for
misalignment. This expectation follows from several factors, including the spatial scale and
resolution of the neurons encoding the relevant visual properties, and internal noise in
perceptual systems. Indeed, evidence from both perceptual report (Shipley & Kellman, 1992a)
and objective performance paradigms (Yin, Kellman, & Shipley, 1998) suggests a small
tolerance for misalignment: contour interpolation appears to break down when misalignment
exceeds about 10 to 15 minutes of visual angle. This value is much larger than Vernier acuity



thresholds, but interestingly, it is about the magnitude of misalignment found in the
Poggendorf illusion (Robinson, 1972). The Poggendorf and related illusions produce
significant distortions in the perceived alignment and relative orientations of visible contours.
Tolerance for an amount of misalignment of the same order of magnitude as in these illusions
may allow the visual system to connect appropriate contours despite distortions that occur in

spatial vision.
The value of 10 to 15 minutes of misalignment may not be a constant of nature,

however. Instead, it may be an artifact of the display sizes used in the few studies that have
examined this issue. If a constant value of misalignment determines whether or not contours
get interpolated, then interpolation would not be invariant with viewing distance; in other
words, some contours that appear connected from far away would appear disconnected when
the viewer moves closer. A scale-invariant relationship, such as that depicted in Figure 16,
more likely determines tolerable misalignment. The relevant geometry may be the ratio of
contour misalignment to contour separation (or, equivalently, the angle Θ; see Figure 16). We

currently are carrying out studies to disentangle whether this scale-invariant, angular notion or
an absolute retinal misalignment value governs contour interpolation.

Contour Interpolation and Perceived Contours. Our earlier discussion suggested that contour
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Figure 16. Possible determinants of the threshold for misalignment in contour interpolation. (a) Horizontal

misalignment, m, and vertical separation, d, determine angle Θ. In (b), the edges have the same horizontal

misalignment, m, as in Figure (a), but with the vertical separation, d, reduced. If tolerance depends only on m,

then the effect of misalignment on this display should be similar to that in Figure (a). In (c), both the
horizontal misalignment, m, and vertical separation, d, have been reduced proportionately from Figure (a),

thus preserving angle Θ. If misalignment tolerance depends on m, then the effect of misalignment on this

display should be smaller than in Figure (a); if misalignment tolerance depends on Θ, then the effect of

misalignment on this display should be similar to that in Figure (a).



interpolation mechanisms operate between oriented edges whenever they satisfy the
geometric constraints of relatability. This idea raises an interesting question: Is relatability a
sufficient condition for perceiving interpolated contours (illusory or occluded)? Some
exceptions seem readily apparent. For example, it is well known that unfilled, outline figures
do not effectively evoke illusory contours, even when these outlined inducers have identical
edge relationships to filled inducers that do produce robust interpolated contours (Figure 17).
If contour interpolation depends on the relative orientation and position of physically-defined
edges, then what explains the different appearances of these two displays?

Guttman and Kellman (2000) recently addressed this question in a series of

experiments. In each experiment, observers viewed shapes with edges defined by either filled

or outline notched-circle inducers. For each image, observers performed a classification task

that could be carried out either by judging the overall shape depicted by the real and

interpolated edges, or by examining the edge orientations of individual elements (Figure 18).

In some studies, we measured reaction time for making a speeded classification judgment; in

other experiments, stimuli were masked after a brief exposure, and sensitivity (d') for

discrimination was measured.

The results of these experiments suggested that a low-level contour linking mechanism
operates between outline inducers, even though no interpolated contours are perceived

(Guttman & Kellman, 2000). As in previous studies, the classification tasks appeared to be
sensitive to the process of contour interpolation; manipulations that disrupted the geometry of
edge relatability, such as turning the inducers outward, rounding tangent discontinuities, or
misaligning the contours (as in Figure 18), dramatically reduced classification performance.
However, in all experiments, performance was both accurate and rapid for shapes defined by
outline inducers as well as shapes defined by filled inducers. This proficiency would not be
expected in the absence of interpolation. Results from a priming experiment provided
converging evidence for contour interpolation between appropriately oriented outline inducers
(Guttman & Kellman, 2000).

These data are consistent with an interesting theoretical proposal: Contour

interpolation occurs at an early processing stage whenever visible edges satisfy the

relatability criteria, but not all interpolated contours ultimately are manifest in perception.

To progress to later stages of representation, interpolated contours must pass certain gating

Figure 17. Filled inducers lead to the perception of strong illusory contours, whereas identical figures
composed of outlines fail to elicit illusory contour perception. After Guttman and Kellman (2001).



criteria, such as requirements about consistency of boundary assignment. The outline figures

in our experiments are not recruited into the final perceptual representations of unity and
shape that are available to consciousness. Nonetheless, outlines, like filled inducers, appear to
trigger contour interpolation responses at an early stage that influence performance on
classification tasks.

If true, the idea that all relatable contours are interpolated at an early stage, then
subjected to gating mechanisms, may clarify several issues in object perception. Consider the
outline displays depicted in Figures 17 and 18. Why do these stimuli fail to support illusory
contours? Clearly, both filled and outline inducing patterns will produce edge and junction
responses in the models we have considered. These outputs may, in turn, produce
interpolation responses linking contours across gaps. Only some of these interpolation
responses, however, may be recruited into the final perceptual representation, depending on

criteria imposed subsequently. One such criterion may be consistency of boundary assignment
(Nakayama, Shimojo, & Silverman, 1989). If interpolated contours are constructed at an early
stage but lead to contradictory results in assigning boundary ownership to the objects in the
scene, the perception of interpolated boundaries may not occur. In outline displays, boundary
assignment considerations likely are the factor preventing illusory contour perception. Thin
lines may always be encoded as “owning” their boundaries (see Kellman & Shipley, 1991, for
discussion). Moreover, a closed outline form may have an even stronger tendency for its
boundary to be intrinsic (i.e., owned by the outline shape). An assignment of boundary
ownership to an outline inducer is incompatible with perception of an illusory form, because
perception of the form would require a reversal of boundary assignment, such that the illusory
figure owns the boundary.

The idea that interpolation mechanisms operate on all relatable contours at some stage
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Figure 18. An example of one of the tasks used by Guttman and Kellman (2000) to investigate the operation

of interpolation mechanisms on “illusory” figures composed of outline inducers. For these stimuli, observers
made a fat-thin judgement based on the rotation of the corner elements — or on the overall appearance of the
illusory figure. Control stimuli consisted of misaligned inducers, which contain disrupted edge relationships.



is consistent with suggestions that contour interpolation occurs relatively early in cortical
visual processing. Although imaginable, it seems unlikely that information regarding
boundary assignment is present early enough to prevent “inappropriate” interpolation.
Feedback from higher levels to V1 and V2 could, theoretically, provide the necessary
boundary assignment information to allow interpolation between some appropriately oriented
contours but not others. However, this explanation cannot account for the proficient

classification of shapes delineated by outline inducers (Guttman & Kellman, 2000).
More likely, the lateral interactions necessary for contour interpolation are engaged by

any appropriately oriented edges, regardless of junction type and whether they ultimately lead
to the perception of interpolated contours. By this interpretation, boundary assignment
processes subsequently delete any inappropriately interpolated contours at later stages of
processing (or through feedback to the early interpolation mechanism), thus preventing their
conscious perception. Alternatively, it is also possible that all interpolated contours continue
to reside in the visual system, but cannot be seen unless the visual system also constructs a
bounded surface. Boundary assignment processes may facilitate the perception of a central
illusory surface in figures consisting of filled inducers, but prevent this perception in the case
of figures consisting of outline inducers. Accordingly, the absence of a surface in the latter

case would render any interpolated contours “invisible” to conscious visual perception. The
way in which boundary assignment processes interact with interpolation mechanisms is an
important question for future research.

Symmetry, Regularity, and Familiarity in Object Perception. The Gestalt notion of Prägnanz
describes the tendency of perceptual processing to maximize the simplicity and/or regularity
of perceived forms. In Bayesian approaches to computational vision, perceptual outcomes
might include information about the prior likelihood of particular objects existing in the
environment. What these perspectives have in common is the idea that object perception may
not be accomplished through purely feed-forward, relatively local processes. Instead, global
and/or top-down influences may affect one or more stages of processing in object perception.
Although suggestions about such influences have been perennial (e.g., Kanizsa, 1979), it

remains controversial whether and how notions such as object symmetry, regularity,
familiarity, and likelihood actually affect the processes of object perception.

As the claims and phenomena in this domain have been diverse (not to mention
confusing), we think it is important to distinguish three ways in which such effects might
arise, with reference to the model presented in Figure 1. As given, the model is primarily
“bottom up,” in that representations of unified objects derive from stimulus information and
computations on that input.

One way that object familiarity or regularity might affect object perception processes
would be through some feedback loop or “top-down” influence. Top-down processing
encompasses any effects in which the possible outcomes of processing directly affect the
processing itself. That is, some relatively early stage of processing activates a late



representation, probably the shape representation; the activated shape representation then
feeds back to and influences the outcome of some earlier processing stage(s). We will call this
sort of top-down processing a Type I effect. As an example of a Type I effect, recall the
suggestion given in Figure 2 about how familiar shape might affect boundary assignment
(Peterson, 1994; Peterson & Gibson, 1991, 1994). The results from contour integration might
activate a shape representation, which then feeds back to influence boundary assignment; this

top-down influence makes it more likely that the familiar shape will “own” the contour.
A second kind of effect — let us call it a Type II effect — occurs when the products of

some fairly early stage of processing take a direct shortcut to a late representation, which can
then be used in some cognitive task. Type II effects differ from Type I effects in that
activation of the late representation does not influence earlier processing in any way. For
example, suppose that one owns a pair of athletic shoes of a unique purple color. Suppose that
one such shoe resides on a bed, mostly covered by a blanket, so that only one small purple
patch is visible. Viewing this scene, only a small purple patch becomes available in the visible
regions representation, and this patch does not own its boundaries; in this case, the visual
system lacks sufficient information to perform boundary interpolation and recover shape
through the processes given in the model. However, the purple color alone may activate a

memory representation of the uniquely colored shoes. Therefore, the observer can “recognize”
the shoes, in the sense that some representation of the shoes becomes active. This can be
modeled in terms of Bayesian priors — the patch of purple may be highly correlated with the
presence of these shoes.

The shoe scenario exemplifies a Type II effect because recognition (a cognitive task)
has been accomplished while bypassing several processing stages; in fact, Type II effects may
best be described as shortcuts that result in “recognition from partial information” (Kellman,
2000). The example cannot be described as a Type I effect, as activation of the shoe
representation need not have any effect on earlier stages of processing, like contour
integration or boundary interpolation; these processes may continue to produce indeterminate
outputs. We should note, however, that the detailed contour and surface processes of the

model can proceed in parallel with these sorts of recognition shortcuts. That is, multiple
representations may emerge from processing (van Lier, van der Helm, & Leeuwenberg,
1995), one from the full array of contour and surface processes (integration, interpolation, unit
formation, etc.), and the other from a processing “shortcut” whereby some early
representation activates a shape representation directly.

Finally, symmetry or regularity information may affect a particular component process
in object perception without any feedback from later representations. That is, some functions
in the model in Figure 1 may take into account stimulus information from outside the
immediate processing area, thus allowing global symmetry or regularity to affect the
perceptual outcome. We will refer to these sorts of global influences, which occur without any
top-down processing, as Type III effects.

Sekuler, Palmer, and Flynn (1994) reported evidence suggesting that symmetry



influences object completion in displays like the one shown in Figure 19. In this example, the
presence of symmetry, which resulted in “global” completion, could have influenced
perceptual processing via any of the three kinds of effects. That is, the three visible lobes
(Figure 19a) may have activated a later representation of a fully symmetric object, which then
fed back to influence the interpolation process; in this case, the role of symmetry would be a
Type I effect. However, symmetry may influence perception without any feedback from a

higher-level representation, as a Type I effect requires. If symmetry influences visual
interpolation in general, whether the resulting figure is familiar or unfamiliar (and thus
whether or not a later shape representation exists), then the effect may be better understood as
a Type III effect. That is, the process of contour interpolation itself may take symmetry into
account; whereas we have stressed local edge relationships in guiding the boundary
interpolation process, the visual system might instead use some algorithm whereby the three
visible lobes in Figure 19a trigger the generation of a fourth lobe. Finally, symmetry’s
influence could be a Type II effect — symmetry may not affect contour interpolation per se,
but instead might simply activate some representation of a symmetric object through
recognition from partial information. Sekuler et al.’s data were derived from a priming
paradigm; during priming experiments, observers view both occluded and unoccluded

(a) (b)

(c) (d)

Figure 19. Global completion and the identity hypothesis: (a) Partial occlusion display in which symmetric

completion (i.e., interpolation of a fourth rounded lobe behind the occluder) may, theoretically, occur. (b)
Illusory contour display in which the central figure has equivalent visible edges to Figure (a); a locally smooth

completion, rather than a globally symmetric completion, is seen. (c) Partial occlusion display with non-

relatable edges in which interpolation of a triangle has been claimed. (d) Illusory contour display with visible

contours equivalent to Figure (c). Observers do not perceive a triangular or other contour completion.



versions of the stimuli over a large number of trials. After a few exposures, a partly occluded,
potentially symmetric form might activate directly the stored representation of the symmetric
counterpart.

How might we determine the actual locus of the symmetry effect? We have already
mentioned one consideration suggesting that symmetry might involve a Type II effect —
recognition from partial information. Recall the identity hypothesis, the idea that a common

contour interpolation process underlies partly occluded and illusory contours. If true, the
identity hypothesis sheds light on the nature of the symmetry effect because symmetry-based
or global completion phenomena never are experienced in illusory figures. As an example,
Figure 19b shows an illusory object with physically-defined edges equivalent to those in
Figure 19a. The reader may notice that there is no appearance of a fourth lobe in the illusory
figure display. In fact, most observers perceive a smooth illusory contour connecting relatable
edges. Thus, given the logical arguments and empirical findings supporting the identity
hypothesis (Kellman & Shipley, 1991; Kellman, Yin, & Shipley, 1998; Ringach & Shapley,
1996; Shipley & Kellman, 1992a), we would argue that the contour interpolation process
underlying both illusory and occluded contour completion is not influenced by symmetry.

If the identity hypothesis is true, then why should global completion occur in occluded

but not illusory object displays? The answer may be that the displays trigger the same
perceptual processes of contour and surface interpolation, but only occluded figures activate a
shape representation from partial information. But why doesn’t recognition from partial
information occur with illusory figures? In one sense it may. With an illusory figure, an
observer certainly could report that the visible lobes “suggest” or “remind them of” the
appropriate symmetric figure; however, the observer would not see any illusory contours
along the figure’s boundaries (i.e., the contours have no modal presence). Thus, there exists
an obvious discrepancy between what is suggested by partial information and the contours
actually interpolated; as a result, the perceptual system rejects the symmetric figure as
actually existing in the image. With occluded figures, however, the difference between the
representation activated via recognition from partial information and the representation

activated through contour interpolation may not be so obvious. By definition, part of an
occluded object is hidden from view, and the hidden parts have no sensory presence. Thus,
both interpretations — the local representation developed through contour interpolation and
the global representation induced by a Type II effect — are possible. Thus, an observer may
perceive a partly occluded object as a globally symmetric form, due to a recognition from
partial information, whereas this representation is rejected in the case of illusory figures
because nothing is hidden.

The idea that Type II effects — recognition from partial information — are
responsible for certain “global effects” in contour interpolation may clarify certain issues.
First, pointing to an occlusion display similar to the one shown in Figure 19c, Boselie and
Wouterlood (1992) argued against Kellman and Shipley’s (1991) relatability geometry,

presumably because they found the presence of a triangle in the display to be obvious. (The



visible edges of the black figure are not relatable, because they violate the 90 degree bending
limit for interpolated contours.) However, it is doubtful that contour interpolation occurs in
this display, even though the image clearly makes us think of triangles. Consider the illusory
contour version, which contains the same visible edges, shown in Figure 19d. No third point
of a triangle is visible.

Second, the research literature on the completion of partly occluded objects contains

several conflicting reports about global and local processing (e.g., Boselie, 1988, 1994;
Sekuler, Palmer, & Flynn, 1994). We suggest that “local” effects derive from actual contour
interpolation processes, whereas “global” effects depend on recognition from partial
information. Importantly, the only objective data supporting global percepts come from
priming studies. Priming occurs at many levels (e.g., Kawaguchi, 1988), from the most basic
representation of the stimulus to conceptual interpretations (e.g., a picture of a fork would
probably prime the word “knife”). Unfortunately, there have been no attempts to determine
the level at which priming occurs for partly occluded objects.

How might we differentiate Type I, II, and III effects experimentally? Type II effects
differ from the others in that recognition from partial information may occur without any
influence on local contour perception. That is, when shape representations become activated

through a “shortcut,” there is no need for earlier stages of processing to include specification
of precise boundaries in particular locations. When we see the tail rotor of a helicopter
protruding from behind a building, we may activate an overall shape representation for
“helicopter,” but the boundaries of the hidden parts remain poorly specified. By contrast,
contour interpolation processes (whether or not influenced by feedback from higher levels),
do produce well-localized boundaries. Accordingly, it may be possible to distinguish Type II
effects from Type I or Type III effects based on the precision of contour representations in
partly-occluded or illusory contour displays.

Kellman and colleagues (Kellman, Shipley, & Kim, 1996; Kellman, Temesvary,
Palmer, & Shipley, 2000) developed an objective paradigm to measure the precision of
boundary localization. In these studies, observers viewed short presentations of partly

occluded stimuli during which a small, briefly presented dot was superimposed somewhere on
the occluder. On each trial, observers judged whether the probe dot fell inside or outside the
occluded object’s perceived boundaries. The position of the dot was adjusted on the basis of
these responses; two interleaved staircase procedures gave certain threshold points for seeing
the dot inside versus outside of the boundary. From these data, Kellman et al. derived
estimates of perceived boundary position and precision of localization.

To minimize performance differences based on competing perceptual and recognition
processes, Kellman et al. (1996, 2000) provided subjects with explicit strategy instructions. In
the global instruction condition, subjects were told (with specific examples) that they should
see the display as symmetric; in the local instruction condition, subjects were told that they
should see the display as containing a simple curve connecting the two visible edges. In this

manner, Kellman et al. sought to determine our best ability to localize boundaries under a



global or local interpretation.
When subjects produced “local” completions, as predicted by relatability, their

localization of boundaries was extremely precise (i.e., inside and outside thresholds differed
very little). This finding held for both straight (collinear) and curved interpolations in a large
range of displays. In contrast, “global” completions resulted in boundary localizations that
were nearly an order of magnitude less precise for all displays; moreover, the estimated

positions of the contour usually differed markedly from the predicted positions based on
symmetry. These results held even when the predicted positions of the relatable (local) and
symmetry-predicted (global) contours were equidistant from the nearest visible contours.

For a “triangle” display such as Figure 19d, Kellman et al. (1996) found that observers
exhibited a large uncertainty about the location of the triangle’s occluded vertex. Most
subjects' best estimate of its position differed from the actual position (determined by
extending the visible contours as straight lines) by at least 15% of the height of the triangle.

In sum, global influences like symmetry and familiarity apparently do not produce
local contour interpolation. Contrary to Type III models, symmetry does not appear to work
within the interpolation process to create precisely localized contours. Contrary to Type I
models, although shape representations become active, they do not establish local contours

via feedback to interpolation mechanisms. Thus, it appears that effects suggesting global
perceptual completion may actually depend on recognition from partial information — Type
II effects. Operating in parallel with the object perception processes we have outlined, partial
information may activate later cognitive representations directly. Both processing routes play
important roles in human object recognition; distinguishing them, however, may clarify the
theoretical situation considerably.

Interpolation in Three-Dimensional Object Perception. Until now, most of our discussion of
object perception has emphasized information in static, 2-D luminance images. This focus
mirrors the research literature: although geometric studies using more complex stimuli have
started to emerge, all existing neural-style models possess tight constraints on the kinds of
inputs they can accept. Detailed models of the processes that extract information from such

2-D, static images represent an important advance, but even with further elaboration and new
data, they cannot be complete.

Object perception is at least a four-dimensional process. It involves information
derived not only from spatial variations across a frontoparallel plane, but from depth
differences and changes over time given by motion. In fact, more modern views of perception
suggest that the basic structure of the visual system includes mechanisms for extracting depth
and spatiotemporal relationships (Gibson, 1966, 1979; Johansson, 1970; Marr, 1982). These
accounts emphasize that perceptual systems adapted to serve mobile organisms in a 3-D
world.

At a few junctures, we have already noted some relevant details. For example,
perceived edges may depend on motion and stereoscopic depth discontinuities, as well as



luminance contrast. Here we comment more generally on the role of depth and motion in
object perception.

Consider the problem of perceiving object unity and boundaries in the 3-D world.
Acquiring accurate representations of contour and surface orientations in three dimensions
would seem to be of high priority for comprehension of and action within the environment. In
terms of the processes of visual segmentation and grouping, it would seem that sensitivity to

3-D relationships among visible parts of contours and surfaces would be important in
discovering the connected objects that exist in the world. Research suggests that contour and
surface interpolation processes do, indeed, take edge and surface orientations in 3-D space as
their inputs and produce interpolated contours and surfaces that extend through depth
(Kellman, Machado, Shipley, & Li, 1996; Kellman, Yin, Shipley, Machado, & Li, 2001).
Figures 20a and 20c illustrate 3-D interpolations, where the contour positions depend on
stereoscopic depth information. Observers tend to perceive smooth contours and surfaces
connecting the top and bottom white tabs across the intervening gaps. Figures 20b and 20d
illustrate that misalignment in depth disrupts the interpolation processes. Although the
monocular images fall within the tolerable misalignment for 2-D interpolation, the top and
bottom white surface pieces do not appear to connect when the display is seen in depth.

Kellman et al. (1996) proposed that 3-D interpolation is governed by an elaboration of
the notion of contour relatability to three dimensions. Informally speaking, two contours
extending through depth are relatable if, in 3-D space, there is a smooth, monotonic
connection between them. As with the original construct, two contours will be connected by
the boundary interpolation process if and only if they are relatable.

For a more intuitive idea of 3-D relatability, the white surface patches given in the
stereoscopic displays are shown below in side view (Figure 20). When the surfaces meet the
3-D relatability criteria, the contours in the side view also are relatable in two dimensions.
Thus, the examples in Figures 20a and 20c meet the conditions of 3-D relatability, whereas
Figures 20b and 20d contain misalignments in depth that disrupt relatability.

To study 3-D interpolation experimentally, Kellman et al. (1996) developed an

objective task using the kinds of stimuli displayed in Figure 20. On each trial, observers
viewed two surface patches, presented stereoscopically, that could be classified as lying in
parallel planes (including the case of coplanarity) or intersecting planes. Observers made a
speeded classification judgment by pressing one key for “intersecting” (as in Figures 20a and
20b), and another key for “parallel” (as in Figures 20c and 20d); note that the response did not
depend on impressions of interpolation or the notion of 3-D relatability. Kellman et al.
predicted that: (1) analogous to certain tasks using 2-D shapes, perception of a unified object
would facilitate classification performance; and (2) perceived unity, as indexed by superior
speed and/or accuracy, would depend on the relatability criteria.



The results of this study, which included a number of control groups to ensure that the

results truly depended on depth relationships and interpolation, will be reported in detail
elsewhere (Kellman et al., 2001). To summarize, all of the results supported the predictions:
observers classified relatable displays more accurately and rapidly than non-relatable displays.
These data suggest that relatability describes the conditions necessary for contour
interpolation in depth.

The study of three-dimensional interpolation processes using objective tasks is in its
infancy. Nonetheless, the results already indicate that models of object perception will need to
be broadened to accept as inputs the 3-D positions and orientations of edges, and to produce
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Figure 20. Displays used by Kellman et al. (1996) to test 3-D interpolation: (a) relatable, intersecting surfaces;
(b) non-relatable, intersecting surfaces; (c) relatable, parallel (coplanar) surfaces; (d) non-relatable, parallel

surfaces. To experience the stereoscopic effect, cross fuse the two images in each pair, using the small circles
to focus. A side view of the two white surfaces appears below each stereoscopic pair.



interpolated contours and surfaces that extend through all three spatial dimensions.

Spatiotemporal Interpolation in Object Perception. When looking through dense foliage, an
observer may see bits of light and color from the scene behind but may be unable to detect
specific objects or spatial layout. However, if the observer moves parallel to the occluding
foliage, the scene behind may suddenly be revealed. This ordinary experience suggests that
humans have robust abilities to perceive the objects in a scene from information that arrives

fragmented in both space and time.
Experimental work has begun to address our spatiotemporal integration abilities. For

example, we have known for some time that illusory figures may arise from inducing
elements that appear sequentially (e.g., Bruno & Bertamini, 1988; Kellman & Cohen, 1984;
Kojo, Liinasuo, & Rovamo, 1993). Perception of these figures requires not only that the
visual system integrate information over time, but also interpolate, as some parts of the object
never project to the eyes.  Similar situations often are encountered in everyday perception
involving ordinary environments and moving objects or observers.

Current models of visual interpolation, such as the ones we have considered, are not
configured to handle inputs that arrive fragmented over time. One obstacle to broadening our
theories and models is the open-ended nature of the question: What stimulus relationships in

both space and time lead to the perception of complete, unified objects? With the extra degree
of freedom given by motion, the question seems daunting.

To simplify the problem, Palmer, Kellman, and Shipley (1997, 2000) proposed two
simple hypotheses that would allow the geometry of spatial relatability to be generalized to
the problem of spatiotemporal interpolation. Figure 21 illustrates these ideas. The persistence

hypothesis (Figure 21a) suggests that the position and edge orientations of a briefly-viewed
fragment are encoded in a buffer, such that they can be integrated with later-appearing
fragments. In Figure 21a, an opaque panel containing two apertures moves in front of an
object, revealing one part of an occluded object at time t1 and another part at time t2. If
information concerning the part seen at t1 persists in the buffer until the part at t2 appears, then
the standard relatability computation can be performed to integrate the currently visible part

with the part encoded earlier.
In Figure 21b, the object moves behind a stationary occluder, again revealing one part

through the bottom aperture at t1 and a second part through the top aperture at t2. This figure
illustrates the spatial updating hypothesis. According to this idea, the visual system encodes a
velocity signal of any moving objects or surfaces, in addition to their positions and edge
orientations; once these surfaces become occluded, the visual system uses the velocity signal
to update their spatial position over time. Thus, when a later-appearing object part (upper
aperture at t2) becomes visible, it can be combined with the updated position of the earlier-
appearing part (lower aperture at t1) using the standard spatial relatability computation.

Ongoing investigations suggest that this notion of spatiotemporal relatability, based on
the persistence and spatial updating hypotheses, may account for a number of phenomena in

� T
im

e

t0

t1

t 2

(a) (b)

Figure 21. Illustrations of spatiotemporal relatability. (a) The moving occluder reveals relatable parts of the
rod sequentially in time (t1 and t2). Perceptual connection of parts requires that the initially visible part persists

over time in some way. (b) Parts of the moving rod become visible through apertures sequentially in time.
Perceptual connection of the parts requires not only persistence of the initially visible part but positional
updating based on velocity information. After Palmer, Kellman, and Shipley (1997).



which observers accurately perceive moving objects that are exposed piecemeal and only
partially from behind apertures (Palmer et al., 1997, 2000). Whether or not the current notion
of spatiotemporal relatability proves to be an adequate account of dynamic object perception,
it is clear that both geometric and neural-style models must be broadened to accept inputs
over time, and also to assemble such sequentially available fragments into meaningful units
and forms.

CONCLUSION

Research on object perception is a multifaceted enterprise. In this chapter, we have
attempted to set out some of the information processing tasks that must be accomplished in

the visual perception of objects, as well as our current state of knowledge regarding the
underlying processing. One of the clearest themes in our discussion may be that multiple
levels of analysis must be undertaken to understand the information, computations, and neural
machinery involved in object perception. In particular, geometric models describe the tasks,
information, and stimulus relationships necessary to accomplish visual segmentation and
grouping, while neural-style models address how the processing might actually be carried out
in neural circuitry. These two modeling efforts serve complementary functions, and neither
can be fully appreciated without a thorough examination of the other. Although our
knowledge about the different component tasks varies widely, today we are closer to a
coherent view of object perception than ever before. Our understanding may be expected to
advance even further as geometric, process, and neural models co-evolve.
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