
Forensic Comparison and Matching of Fingerprints:
Using Quantitative Image Measures for Estimating Error
Rates through Understanding and Predicting Difficulty
Philip J. Kellman1, Jennifer L. Mnookin2, Gennady Erlikhman1*, Patrick Garrigan3, Tandra Ghose4,

Everett Mettler1, David Charlton5, Itiel E. Dror6

1 Department of Psychology, University of California Los Angeles, Los Angeles, California, United States of America, 2 School of Law, University of California Los Angeles,

Los Angeles, California, United States of America, 3 Department of Psychology, St. Joseph’s University, Philadelphia, Pennsylvania, United States of America, 4 Department

of Psychology, Technical University of Kaiserslautern, Kaiserslautern, Germany, 5 Sussex Police, Sussex, United Kingdom, 6 Institute of Cognitive Neuroscience, University

College London, London, United Kingdom

Abstract

Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on
the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less
information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may
contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual
expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the
discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes
involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular
comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a
new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple
regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of
useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast
information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural
features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges.
Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors
demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures
to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to
predict expert performance and subjective assessment of difficulty in fingerprint comparisons.
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Introduction

There has been a longstanding belief in the scientific validity of

fingerprint evidence, based on the apparent permanence and

uniqueness of individual fingerprints, the experience-based claims

of trained fingerprint examiners, and the longstanding courtroom

acceptance of this forensic technique. Yet systematic scientific

study of the accuracy of latent fingerprint identification is a very

recent development, still very much in progress. In the past,

fingerprint identification was sometimes even claimed to be

‘‘infallible’’ or to have a ‘‘zero error rate’’ so long as the method

was appropriately applied by an experienced examiner [1], [2].

High-profile cases in which errors were discovered, along with the

inherent implausibility of assertions of infallibility, led to doubts

about such claims of accuracy, but only in the last few years have

scientific efforts to assess the strengths and limitations of

fingerprint identification gained traction. The 2009 National

Academy of Sciences report on forensic science [3] emphasized

and spotlighted both the limits of our knowledge and the need for

basic research, and since that report. The available data suggest a

low level of false positive errors by experts under experimental

conditions and a substantially higher rate for false negatives [4],

[5]. While these data suggest that well-trained, experienced

examiners are highly accurate when making positive identifica-

tions, it is also clear that errors still occur. Understanding what

characteristics of print pair comparisons make errors more or less

likely is thus critical to assess both the power and limits of this

important forensic technique.

Fingerprint examiners can specialize and become latent or

tenprint examiners or both. A latent examiner focuses on

comparing ‘‘chance’’ fingerprints left accidentally at crime scenes

or elsewhere, to possible source prints. A tenprint examiner, by

contrast, compares fingerprints purposefully collected in controlled

circumstances (such as at a police station) with those on file in a

database. In police stations, impressions from all ten fingers are
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often collected on a single sheet, which is why they are called

tenprints. Tenprints are also referred to as ‘‘known prints’’ because

the identity of the source of the impression is known. In this paper,

we use the term known print to refer to such prints. Latent prints

have to be processed in order to be made visible, and often contain

only a portion of a finger or other friction ridge area. They are

often smudged, distorted, and may contain artifacts or noise due to

the surface upon which they were left, or as a result of processing.

By contrast, known prints are collected in controlled situations

where poor impressions can be retaken, so they are typically

larger, clearer, and richer in information content than latent

images. Latent prints tend to be highly variable in quality, while

known prints generally capture fingerprint information with high

fidelity. Known prints are often acquired by law enforcement

agencies using ink or a scanner. A sample latent and known print

are shown in Figure 1.

Until recently, there were virtually no scientific studies of how

often fingerprint examiners made errors. However, recent studies

have provided helpful information for this assessment [4–6]. Ulery,

Hicklin, Buscaglia, and Roberts [4] had 169 latent print examiners

compare an independent sampling of 100 fingerprint pairs (from a

set of 744), each pair consisting of one latent print and one known

print. Ulrey, et al. [4] found that 7.5% of matching pairs were

labeled non-matches (false negatives), while only 0.1% of non-

matching pairs were labeled matches (false positives). Similar

results were found by Tangen, Thompson, and McCarthy [5]:

7.88% errors for matching pairs (false negatives) and 0.68% errors

for non-matching pairs (false positives). These studies took place in

experimental conditions quite different from actual casework.

Error rates from these studies likely do not fully reflect real-world

performance [7], but they do indicate high levels of performance

by experts. Studies also indicate that experts perform far better

than novices at fingerprint matching tasks [5], [6].

From a research point of view, the low false positive rates

among fingerprint examiners make the discovery of determinants

of such errors quite difficult. High accuracy leads to little

variability in performance, undermining standard statistical

analyses. However, the low number of these errors should not

be taken as an indication that studying them has little practical

importance. A false match can lead to a false conviction, and a

false exclusion can lead investigators to focus their attention on

erroneous leads or to fail to convict the actual perpetrator.

Furthermore, the realities and pressures in real criminal casework

may substantially increase error rates, including false positives. In

addition, even if these experimental error rates were established to

be similar to those in actual practice, these low error rates get

multiplied by a very large number of fingerprint comparisons, so

the absolute quantity of real-world errors would not be de minimus.

Ironically, the practical importance of understanding when and

why fingerprint comparison errors occur is likely to increase as

technology advances. It is common for a latent print to be

submitted to an AFIS (automated fingerprint identification system)

database, where automated routines return a number of most

likely potential matches. Error rates (especially of the false-positive

type) may increase as databases get larger (currently some

databases include tens of millions of prints). The reason for this

is that as a database grows, an AFIS searching that database is

increasingly likely to find close non-matches, (prints that are highly

similar to the latent, but are in fact from a different individual –

what are often termed ‘‘look-alikes’’). Obviously, searching larger

databases also increases the chances of finding a true match, but

such progress can also make the task of the human examiner more

demanding and, potentially, error-prone [8].

From a visual information processing perspective, it is therefore

interesting and important to determine what visual characteristics

of fingerprints influence the ease and accuracy of comparisons.

Ultimately, it may be possible to evaluate a fingerprint comparison

in terms of the quantity and quality of visual information available

[9] in order to predict likely error rates in comparisons. Better

understanding of objective metrics could also help determine when

a print pair contains or lacks sufficient information to make an

identification or exclusion, that is, to determine when an

‘‘inconclusive’’ assessment is warranted. These considerations

motivate the present study. Its primary goals are to: (1) measure

expert examiner performance, and (2) to create a predictive

framework by which one could assign an appropriate level of

confidence in expert decisions, derived from an objective

assessment of characteristics of the pair of images involved in a

particular fingerprint comparison. These two goals are intercon-

nected: examiner performance levels (error rates) are likely to

depend on the complexity and difficulty of the comparison.

Specifically, as comparisons become more difficult, errors are

more likely to occur. A single overall ‘error rate’ for latent

fingerprint comparison would be insufficiently granular, as it

would fail to recognize that some comparisons are likely far easier

than others, and thus far less prone to error. Hence, the

characterization and prediction of error rates must be a function

of the difficulty of the comparison. Notwithstanding this relation-

ship, no previous research on fingerprint identification has

attempted to generate objective models for the assessment of

fingerprint difficulty.

Perceptual Aspects of Fingerprint Expertise
If asked to give reasons for a conclusion in a given comparison,

fingerprint examiners would display significant explicit knowledge

relating to certain image features, such as global configurations,

ridge patterns and minutiae, as these are often explicitly tagged in

comparison procedures, and they are pointed out in training of

examiners. It would be a mistake, however, to infer that the

processes of pattern comparison and the determinants of difficulty

are therefore fully available for conscious report or explicit

description. As in many other complex tasks in which learning has

led to generative pattern recognition (the ability to find relevant

structure in new instances) and accurate classification, much of the

relevant processing is likely to be at least partly implicit [10–12].

Like many other tasks in which humans, with practice and

experience, attain high levels of expertise, feature extraction and

pattern classification in fingerprint examination involves perceptual

Figure 1. Sample fingerprint images used in the study. The
image on the left is a latent print. Note large areas of the image that are
smudged or missing. Contrast and ridge clarity vary greatly across the
fingerprint area. These and other aspects of the image could make
comparison difficult. The image on the right is a known print and is
much clearer.
doi:10.1371/journal.pone.0094617.g001
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learning – experience-induced changes in the way perceivers pick

up information [13], [14]. With extended practice, observers

undergo task-specific changes in the information selected – coming

to discover new features and relationships that facilitate classifi-

cation in that domain. Evidence supporting this claim comes from

increased perceptual learning when these features are exaggerated

during training [15].

There are also profound changes in fluency: What initially

requires effort, sustained attention, and high cognitive load comes

to be done faster, with substantial parallel processing and reduced

cognitive load [12]. In turn, becoming more automatic at

extracting basic information frees up resources for observers to

discover even more subtle or complex structural information, e.g.,

[16]. This iterative cycle of discovery and automaticity followed by

higher-level discovery is believed to play a significant role in

attaining the impressive levels of performance humans can attain

in areas such as chess, chemistry, mathematics, and air traffic

control, to name just a few domains [12], [17].

While several studies have explored the influence of bias and

emotional context on fingerprint matching and classification [18–

22], there has been relatively little work investigating perceptual

aspects of expertise among examiners or perceptual learning

processes that lead to expertise. One exception is a study by Busey

and Vanderkolk [6], in which novice and expert fingerprint

examiner performance was compared on a configural processing

task. Subjects were shown a small image patch from a fingerprint

and, after a mask, attempted to match the image patch to a

luminance- and orientation-adjusted version presented along with

a distractor fingerprint image patch. Subjects did not have an

opportunity to closely examine the fingerprint patches as they only

appeared for one second. This presentation procedure required

subjects to rely heavily on the broad patterns of ridge flow

(configural information) to perform the matching task. Experts

exhibited nearly perfect performance, while novices had an

accuracy of 0.8. Compared to the novices, experts may have

utilized fingerprint information more efficiently, focused on

entirely different information, and/or more effectively filtered

out irrelevant information; the study did not provide information

for distinguishing among these possibilities. However, the ease of

information processing of task-relevant information is a hallmark

of fluency effects in perceptual learning.

Similarly, Thompson et al. [23] found that the amount of visible

area in a target print was positively correlated with classification

accuracy among novices. Interestingly, this relationship also

depended on the source of the print (e.g., index vs. pinky),

although it was unclear why one finger should hold more

information than another since presented areas were constant

across prints. Marcon [24] had naı̈ve observers rate ‘‘high quality’’

(known prints) and ‘‘low quality’’ latents for distinctiveness.

Performance for categorizing pairs of prints as coming from the

same source or a different source was higher for high-quality and

high-distinctiveness images. Together, these studies show that

performance suffers when fingerprint image quality is low, but

reveal little about the specific nature of the information that

correlates with low or high quality.

Fingerprint Features in the Standard Taxonomy
The first step in latent print examination is often manual

preprocessing. For example, the region of the image that contains

the fingerprint could be selected from the background and

oriented upright. If a fingerprint is to be submitted to a database

for automated comparison, key features need to be identified and

labeled. Automated searches are then carried out by software that

finds fingerprints on file with similar spatial relationships among

the features labeled in the submitted fingerprint. This is the only

part of the examination and comparison process that is automated.

The software returns a list of potential matches, many of which

can be quickly excluded. Some will be closer non-matches or a

match, and these require further scrutiny by a human examiner.

Whether examiners are provided with potential matches via

automated database searches or via investigative work, they often

make their match decisions using the ACE-V approach: Analysis,

Comparison, Evaluation, and Validation [25]. The examiner first

looks at the latent print closely (analysis), then compares the two

prints relative to each other, looking for both similarities and

differences (comparison). They then evaluate those similarities and

differences to arrive at a decision about whether the prints match

or not. In the final step, a second examiner independently

validates the conclusion. Mnookin [26] points out that there is no

formalized process for any of these steps. There is no method or

metric for specification of which features should be used for

comparison, nor any general measure for what counts as sufficient

information to make a decision. Examiners rely on their

experience and training rather than formal methods or quantified

rubrics at each step of the process.

Despite the lack of a formalized procedure, some attempts have

been made to formally describe and classify the kinds of features

that might be found in a fingerprint. Three types of features are

commonly used to describe the information used for fingerprint

comparison (for a complete discussion, see [27]). Level I features

are global descriptors of ridge flow easily seen with the naked eye.

These include patterns in the central region (the ‘‘core’’) of the

fingerprint. Cores can be classified into a limited number of typical

patterns such as left- and rightward loops, whorls, tented-arches

and arches. Deltas are another Level I feature that are triangular

patterns of ridge flow that often occur on the sides of loops and

whorls. A leftward loop and a delta are indicated by the yellow and

green boxes respectively in Figure 2. Level I features are too

common to be sufficient for identification, but they can be used for

exclusion purposes as well as to guide inspection of the more

detailed Level II and Level III features.

Level II features include minutiae such as ridge bifurcations and

ridge endings. Level II features are found where fingerprint ridges

and valleys split or end. Minutiae are highlighted in red circles in

Figure 2. The power of fingerprints for identification purposes is

largely due to the high variability in the existence and relative

positions of these features across fingers and individuals. Scarring,

which occurs naturally with age and wear, can also add unique

ridge patterns to a fingerprint. However, while scars can be used to

compare the fingerprint found at a crime scene to that of a suspect

in custody, they may not always exist in fingerprints on file that

can be old and therefore predate the markings.

Level III features are the smallest fingerprint features used by

some examiners for comparison. These include the positions of

sweat pores and ridge thickness. Pores are indicated in light blue

circles in Figure 2. The visibility of Level III features depends on

the quality of the prints and examiners do not uniformly make use

of them for comparison purposes.

Predictor Variables
What properties of the images in fingerprint pairs are most

important and informative in comparing fingerprints? What visual

qualities of individual prints or of print pairs make accurate

matching performance more or less likely? Although we relied on

regression methods to provide answers to this question, it was

important to develop as inputs to the regression analyses a wide

variety of possible image characteristics that could be relevant. To

generate such factors, we were guided by vision science, intuition,
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insights from fingerprint examiners, and prior work on image

processing of fingerprints [27], as well as the standard taxonomy of

levels of pattern information in fingerprints (described above).

Some variables intuitively seem likely to relate to the sheer

quantity of available information; for example, having greater

print area available for comparison might make comparisons more

accurate. However, this might well be oversimplified; quality of

information might matter as much or more than total print size.

We created several image quality metrics that appear sensitive to

smudging, missing regions, poor contrast, etc. These metrics were

computed in an automated fashion on the fingerprint images

themselves, and were designed to relate in a variety of ways to the

presence or absence of visual information that examiners use, and

could therefore function as independent variables that are

predictive of examiner performance.

We hypothesized that difficulty would be a function both of the

characteristics of the individual prints (the latent and the potential

match) and also of the characteristics of the pair. Because known

prints are obtained under relatively standardized conditions, they

are subject to significantly less variability than latent prints

obtained from crime scenes. Accordingly, we expected that more

of the variability in visual information quality affecting fingerprint

comparisons would be determined by characteristics of latent

prints. An especially poor quality latent might be more difficult to

assess than a higher quality one, all else being equal. However, we

also believed that pair difficulty would be a function of interaction

effects between the latent and the known, not simply a function of

the information quality and quality of each independently. We

therefore developed quantitative measures involving both individ-

ual prints and print pairs.

A general description and motivation for the image features we

selected or developed is provided below. Except where noted, we

assessed each predictor variable for both the latent print and the

known print. For many variables, we also derived a variable that

expressed an interaction or relationship of the values of a variable

for the latent and known print combined (such as the ratio of latent

print area to the known print area, or the Euclidean sum of

contrast variability for the latent and known print combined). For

details about the procedures used to derive the measures we used,

please see the supplementary materials.

Total Area. This variable was defined as the number of pixels

in the fingerprint after the fingerprint was segmented from the

background. Although machine vision algorithms exist that could

have been used for determining the region of usable print image,

those algorithms we examined were not as good as human

segmentation, and different human observers in pilot work

produced strong agreement. Accordingly, we segmented finger-

prints from their surrounds by having human observers designate

their boundaries (see supplementary materials for details). In

general, we expected that larger areas, especially of latent prints,

would provide more information for making comparisons.

Area Ratio. To relate the relative area of a latent to a

potentially matching known print, we divided the area of the latent

fingerprint by the area of the known print. Typically the known

print, obtained under controlled conditions, presents a more

complete image. Thus, Area Ratio relates to the proportion of

known print information potentially available in the latent print.

However, for non-matching prints, the area of the latent may be

larger than that of the known print because of differing finger sizes.

Occasionally, even for a matching latent and known print, the

latent could be larger than the known print due to smearing. The

ratio was therefore not strictly in the range [0,1] and cannot be

considered a true proportion.

Image Intensity. We measured the mean and standard

deviation of pixel intensity taking into account all of the pixels in

each fingerprint image (with intensities scaled in the range of

[0,255]). The mean intensity and standard deviation of intensity

provide two related but different measures, sensitive to different

image characteristics. Very dark images (low mean intensity) might

indicate the presence of large smudges that produce large, dark

areas. Low standard deviation in intensity would make ridges

(transitions from light to dark) difficult to detect.

Block Intensity. The image was divided into 50650 pixel

regions and the average pixel intensity was computed within each

region. The mean of the block intensities is the same as the overall

mean Image Intensity. The standard deviation of these regional

averages (standard deviation of block intensity), however, can provide

additional information about variability in image intensity across

the image. Low variability is indicative of many similar areas

across the image, but does not provide information about whether

those regions have low or high contrast (i.e., an all black image and

an image with 50% white and 50% black pixels, evenly distributed

across the image would have low Block Intensity variability). When

pixel intensities are not uniformly distributed across the image,

variability of block intensity is high (i.e., some regions of the image

are darker than others). For latent images, this may indicate the

presence of a smudge or worse contact (lighter impression) in some

regions of the image.

Deviation from Expected Average Intensity

(DEAI). Intensity, as coded above, may be a useful predictor

variable, but both intuition and pilot work led us to believe that it

might not capture some significant aspects of intensity variations.

We therefore developed a separate intensity measure – deviation

from expected average intensity. In an ideal fingerprint image, one

might expect approximately half of the pixels to be white (valleys)

and half to be black (ridges). The expected mean intensity would

therefore be half of the range, or 127.5 (with the brightest pixel

normalized to 255 and the darkest to 0). The absolute deviation of

Figure 2. Various image features commonly identified by
expert examiners. Red circles indicate minutiae (ridge bifurcations or
endings); blue circles indicate pores (they appear as small white dots
along a ridge); the yellow square indicates the delta; the green
rectangle indicates the core, in this case a leftward loop.
doi:10.1371/journal.pone.0094617.g002
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the observed average from the expected average was computed

using the following formula:

DAEI~{ mean pixel intensity{127:5j j

Using absolute value here ensures that deviations from the

midpoint of the intensity range in either direction are scored as

equivalent; the negative sign ensures that the measure increases as

the mean pixel intensity approaches 127.5 (large deviations

produce a large negative value of the measure). While ridges

(black regions), on average, are thicker than valleys (white regions),

making the average intensity slightly lower than 127.5, the

difference was relatively small and was ignored.
Contrast. Michelson contrast was computed for each seg-

mented fingerprint. Michelson contrast is defined as:

Contrast~
(Lmax{Lmin)

(LmaxzLmin)

This contrast measure produces a value between 0 (least

contrast) and 1 (most) by dividing the difference of maximum and

minimum intensity values by their sum. Michelson contrast is

typically calculated from luminance values. In our images, we

calculate Michelson contrast from pixel intensity values, which is

appropriate given that fingerprint images may be displayed on a

variety of monitors with different Gamma corrections.
Block Contrast. The preceding measure obtained the

Michelson contrast for an entire image. We also computed

contrast for smaller image regions – block contrast – by

segmenting the entire image into 50650 pixel regions. Block

Contrast is defined as the mean across the blocks. To illustrate the

difference between overall contrast and block contrast, the

Michelson contrast of an entire image containing all gray pixels

except for one white and one black pixel, would be 1. Block

Contrast, however, would be very low, since most regions of the

image would have 0 contrast. If black and white pixels were

distributed more evenly across the image such that they appeared

in each block, then Block Contrast would be high. High values of the

measure may indicate the presence of clear ridges and valleys in

many areas of the fingerprint. A separate but related predictor was

the standard deviation of block contrast across blocks. Small standard

deviation values could indicate high information content through-

out the image (Block Contrast close to 1 everywhere) or that the

image was uniformly smudged (Block Contrast close to 0

everywhere).
Ridge Reliability. Orientation-sensitive filters were used to

detect edges in the fingerprint image. The relative responses of

these filters were then used to identify ‘‘high reliability’’ regions

where ridge orientation was uniquely specified (see supplementary

materials for details). The proportion of high reliability regions was

computed, resulting in an overall reliability score for each print.

Ridge Reliability ranged between 0 and 1, with larger values

indicating a greater proportion of print area with well-defined

ridge orientation. An additional, relational predictor was comput-

ed by taking the Euclidean sum of the Ridge Reliability for the latent

and known print (Ridge Reliability Sum). Large values of this measure

indicate a high proportion of regions with well-defined ridge

orientation in both the latent and known prints.
Visibility of Cores and Deltas. Earlier we described global

configurations – Cores and Deltas – that provide Level I information

to fingerprint examiners. The fact that ridge flow in fingerprints

tends to follow a circular pattern dictates that there will be some

global core (a whorl, loop, or arch) at or near the center of each

print. Likewise the transition from a core, especially loops and

whorls, to the circular ridge flow tends to give rise to deltas (see

Figure 2). As there will be only one core and at most a small

number of deltas in any print, these serve as important reference

points in making comparisons [27]. Unlike all of the other

variables we used, which could take on a continuous range of

values, Cores and Deltas are binary (either present or not).

Relations Among Basic Predictors
To remove effects on regression coefficients of differing scales of

various predictors, we standardized all continuous metrics by

subtracting the mean and dividing by the standard deviation.

Standardization made some measures that were strictly non-

negative (like Standard Deviation of Intensity) take on negative values.

As is often recommended in using regression methods [28], we also

examined the variables for collinearity and found that several

predictors were highly correlated. For example, the mean and

standard deviation Intensity measures were correlated (Pearson’s

r = 20.77 for latents and 20.44 for known prints). High

correlation among predictors is an undesirable feature for

regression models [28] because it makes it harder to assess the

individual effect of those predictors. If two predictors had a

correlation of greater than 0.5, we removed one of them. After

removal, the variance inflation factor, a measure of collinearity, for

all continuous metrics was less than 5, indicating that collinearity

was sufficiently reduced [28–30].

In addition, we included two-way interactions between all

predictors that applied to both a latent and known print. For

example, in addition to the Standard Deviation of Block Contrast for the

latent and known print, we included the interaction between the

two terms. In addition to Area Ratio and Ridge Reliability Sum, these

interactions are relational predictors that encode something about

the relative quality of information in a latent and known print.

Overview of the Experiment
We developed a database of fingerprint images, both of the

known prints and their corresponding latents, and computed a

variety of metrics that we hypothesized would relate to image

quality and information content. Our primary focus was accuracy,

but we also measured response times and asked experts to provide

subjective judgments of difficulty and confidence for each print

pair. We tested expert fingerprint examiners in a task requiring a

forced-choice judgment of whether two prints matched. As will be

described below, the task approximated what examiners do in

their real-life work in some ways but differed in others. For

example, in the study reported here, images appeared on a

computer monitor; examiners were limited in comparison time for

each pair; and judgments were constrained to indicating that a

pair of prints came from the same source or different sources, i.e.,

‘‘inconclusive’’ was not a permitted response for difficult compar-

isons. These features of our design were chosen so that we could

collect important data, including best-guess match determinations

for difficult comparisons, and to permit us to obtain enough data

to allow us to explore the set of image characteristics that might

predict difficulty. We fit a regression model to measure how

various image characteristics predict performance. To foreshadow

some of the results, we found that a subset of image features such

as measures of the reliability of ridge orientation information, the

ratio of the visible area of the latent to the known print, and

measures of contrast and intensity information were predictive of

performance. The model accurately identified print pairs that had

low accuracies, suggesting that it can be used as a valid tool for

identifying potentially difficult comparisons and that in general, it
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may be feasible to use these methods to predict error rates for print

pairs, as a function of comparison difficulty, with reasonable

accuracy.

Method

Ethics Statement
This study was performed in accordance with the guidelines of

the Declaration of Helsinki. All experts provided written, informed

consent after the general purpose of study was explained and were

fully aware of the purpose and procedure of the study.

Participation was voluntary. The study was approved by the

institutional review board of the University of California, Los

Angeles.

Participants
Fifty-six fingerprint examiners (18 male, 35 female, three not

reported) participated in the study. Forty participants self-reported

as latent print examiners, three as known print examiners, ten as

both, and three did not report. Years of experience were reported

between the range of 1 and 25 years (Latent: Mean = 9.54,

SD = 6.97; Ten-Print: Mean = 10.45, SD = 8.07). Twenty-seven

participants reported being IAI certified. 32 reported that their

labs were accredited.

Participants were either directly recruited at the 2011 IAI

(International Association for Identification) Educational Confer-

ence or via a flyer sent out in advance of the conference. As

incentive, all participants were entered into a raffle to win an iPad

2. All participants signed informed consent forms prior to

participating. As indicated above, some limited demographic

information was collected, but it was stored separately from

individual participant IDs such that the two could not be linked.

Apparatus
All stimuli were displayed on laptop computers with 17-inch

monitors at a resolution of 10246768 pixels. Stimuli were

presented using a program accessed online; data were stored on

the website’s server.

Stimuli
Fingerprints were collected from 103 individuals. Each individ-

ual first used a single finger to produce a clear, known print using

ink as is often done in police stations. Then, using the same finger,

they touched a number of surfaces in a variety of ways (with

varying pressure, smudges, etc.), to create a range of latent

fingerprint marks that reflect those found in a crime scene.

Professional fingerprint examiners who participated in the study

reported that these prints were similar to those that they encounter

in their everyday casework). The latent fingerprints were lifted

using powder and were scanned at 500 dpi using the FISH system.

Image dimensions ranged from 826 pixels in height to 1845 pixels

and from 745 pixels in width to 1825 pixels. The latent prints

varied in clarity, contrast, and size. For each individual who

contributed to the database, we collected a total of six prints – one

known print and five matching latent prints. Across individuals we

varied the fingers used. Each scanned fingerprint was oriented

vertically and approximately centered. Some individuals contrib-

uted multiple sets of prints from different fingers.

To create the non-matching pair of prints, we did not want to

randomly select a known and a latent, as such pairs would often be

too obviously different. This would make the ‘‘non-match’’

decisions nearly uniformly easy, and would also, by default,

indicate which were the ‘‘matching’’ pairs. Therefore, we obtained

similar, but non-matching, known prints by submitting each latent

print to an AFIS search process. An expert selected from the AFIS

candidate list what he deemed to be the most similar non-

matching print. That enabled us to produce non-matching pairs

with a relatively high degree of similarity. The final database

consisted of 1,133 fingerprint images – five latent prints from 103

fingers (515), 103 known prints that matched (103), and another

515 known prints, to provide a potential non-match for each of the

latents. Since we used an AFIS database from a different country

from where we collected the known prints, it was highly unlikely

that an actual match would be presented by the AFIS database

search as a candidate. Furthermore, the expert who selected the

most similar print from the AFIS candidate list verified for each

comparison that this was a similar print, but not an actual match.

Of the 1,133 fingerprint images, 200 latent and known print

pairs were selected and used for the study; half were a match and

half were a close non-match. Individual print metrics were

computed for each image or image pair (see below) and prints

were selected to (approximately) uniformly sample each feature

space. Known prints were sampled without replacement, but

multiple latent prints from the same finger were occasionally

selected since each latent could be paired with a different known

print image (the match or a close non-match). Print pairs were

then grouped into batches of 20, each containing ten matches and

ten non-matches. Latent prints from the same finger did not

appear within the same batch.

Design
A group of experts made match/non-match judgments and

provided confidence and difficulty ratings on a subset of 200 print

pairs selected from a database of over a thousand fingerprint

images. Two fingerprint images that were either from the same

finger (match) or from two different fingers (non-match) were

presented side-by-side. Images were presented on computer

screens and were oriented upright. Examiners had a maximum

of three minutes to evaluate each pair of images. Performance was

recorded for each print-pair tested, and a model was fit predicting

performance based on the set of image features computed for each

image in the database.

Procedure
Participants were tested in a large room, seated at desks with

individual laptop computers. Before data collection began, each

participant was asked to sign a consent form, and then given

written instructions detailing how the stimuli would be presented

and the judgments they would be required to make. Participants

were told that they would be asked to compare latent-known print

pairs and determine whether they were matches or non-matches

(without the option to choose ‘‘inconclusive’’ as a response).

Participants were also told that they would be asked for confidence

and difficulty ratings for each of their judgments. The instructions

emphasized that this procedure was not intended to replicate real-

world conditions and that participants should simply try to

maximize accuracy. Participants were also instructed to refrain

from using any fingerprint examiner tools not provided by the

experimenter, such as a compass.

When the experimental program was initiated, participants

were asked to report their age, gender, years of experience,

specialization, IAI certification, lab accreditation, and lab affilia-

tion. Reporting this information was optional.

Next, the experiment began. On each trial, two fingerprints

were presented side-by-side. The latent print was always on the

left. A button in the top-left corner of each image window allowed

participants to zoom in on each image individually. Fingerprint

image size was constrained within the bounds of each window, so
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that each print was always viewed through an aperture of 460

pixels by 530 pixels. The initial presentation of the images had

them scaled to fit entirely in this window. A single level of zoom

allowed participants to magnify the image. Participants could also

translate each image independently within its window (both when

the image was zoomed or unzoomed) either by dragging it with

mouse or by using arrow buttons in the top-left corner of each

image window. No other image manipulation features were

available.

Participants made a match/non-match judgment by clicking a

button at the bottom of the screen. Specifically, participants were

asked: ‘‘Do these prints come from the same source or a different

source?’’ Participants then made difficulty and confidence ratings

by clicking on a Likert scale. The participants were asked: ‘‘How

difficult is the comparison?’’ and ‘‘How confident are you in your

decision?’’ On the Likert scales, ‘‘1’’ corresponded to least

difficult/least confident and ‘‘6’’ corresponded to most difficult/

most confident. Once all responses were recorded, an additional

button appeared allowing the participant to advance to the next

trial. Supplementary Figure S1 shows a sample screenshot of the

experiment.

Participants had three minutes to complete each trial. A

message was given after two and a half minutes warning that the

trial would end in 30 seconds. If the full three minutes elapsed

without a decision, that trial was ended, and the participant moved

on to the next trial. After presentation of a set of 20 print pairs,

participants were given a short break and asked if they wanted to

complete another set of 20 comparisons.

Each set of 20 print pairs contained ten match and ten non-

match comparisons, though examiners were not provided with this

information. The order in which print pairs were presented within

a set was randomized across subjects. The sets were presented in a

pseudo-random order so that approximately ten participants

completed each set. Although the number of trials completed by

individual participants varied based on their availability and

willingness to do more comparisons, most participants completed

two sets of prints (40 print pairs).

Results

Data Preprocessing
If the participant made a match/non-match judgment, but time

expired before they could make difficulty or confidence ratings, the

data were retained. There were thirteen such trials. If only

difficulty and confidence ratings were provided, but a comparison

judgment was not made before time expired, the trial was

excluded from the analyses. Twenty such trials were excluded

from the total of 2,312 comparisons (fewer than 1%). For one

subject, time expired on eight of the trials they completed. There

was no consistency in which print pairs had time expire – for two

of those pairs, time expired for two subjects, for the rest, time

expired for only one subject.

Descriptive Statistics
Responses were aggregated across participants and prints.

Overall accuracy (percent of correctly classified latent-known print

pairs, averaged across subjects) was 91% (range: 8.3–100%, SD

17%). Overall accuracy was 86% for ‘‘match’’ trials (14% false

negatives) and 97% for ‘‘non-match’’ trials (3% false positives). Of

the 2,292 comparisons, there were 200 errors, resulting in an

overall error rate of 9.6%. There was some variability in

performance among experts (range: 79–100%, SD 5%).

Across all participants, 118 of the 200 print pairs produced

100% accuracy. Mean difficulty and confidence ratings for these

pairs were 2.62 and 5.23 respectively, compared to ratings of 4.06

and 4.15 for prints that were misclassified by at least one

participant. Of the118 pairs that produced no errors, 72 were non-

matches and 46 were matches. The lowest accuracy, 8.3% (1/12),

corresponded to false negatives for a ‘‘match’’ print-pair. Average

accuracy for each print pair is shown in Figure 3 sorted by

increasing accuracy.

Correlations Among Dependent Measures
We measured the correlations among the three dependent

measures. There was a strong negative correlation between

average difficulty and confidence ratings (r(198) = 20.91, p,

0.001) and weaker correlations between average accuracy and

confidence (r(198) = 0.52, p,0.001), and between average accura-

cy and difficulty (r(198) = 20.50, p,0.001). These results suggest

that experts’ confidence in their judgments is well matched to their

perceived difficulty of the judgments, and further that both

expert’s perceived confidence and difficulty are predictive of

performance. There was also a strong positive correlation between

response time (RT) and difficulty (r(198) = 0.71, p,0.001) and a

negative correlation between response time and confidence

(r(198) = 20.59, p,0.001). Accuracy was highest and RT lowest

for prints that were rated least difficult. Accuracy decreased and

RT increased as print difficulty ratings increased. Altogether, these

results suggest that experts faced with difficult print comparisons

tend to have lower confidence in their judgments, and take more

time to ultimately make a match/non match decision. Excluding

the 118 prints with 100% accuracy, the correlations between

accuracy and confidence and between accuracy and difficulty were

qualitatively weaker, but the difference did not reach significance.

The full set of correlations is shown in Table 1.

Regression Analyses
We fit a crossed, logistic regression model in which print pair

performance (1 = accurate; 0 = inaccurate) was crossed with

expert and print identity. This is a type of mixed-effects model and

is appropriate for analyzing these data for several reasons [31],

[32]. First, not every subject evaluated every print pair. A mixed-

effects approach enables the examination of both the predictor

variables and the random effects due to inter-subject differences

(i.e., differences between expert performance and differences

between evaluations of the same print pair by multiple experts).

Second, a mixed-effects approach allows one to model individual

Figure 3. Sorted average accuracy for each print pair. Print pairs
are numbered along the x-axis from 1–200 in order of increasing
accuracy.
doi:10.1371/journal.pone.0094617.g003
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item differences by fitting data from individual trials instead of

aggregating across all presentations of an item [33], [34]. Differing

levels of expertise and experience, as well as differences in

comparison strategy and decision thresholds, could give rise to

variability in participant performance independent of the finger-

print features. Variability across items could occur if some

comparisons were easier than others irrespective of differences in

measured image features. Including these sources of variability in

the model allows us to test whether print comparisons and experts

differed from one another, instead of assuming they were all

equivalent, and simply averaging across participants and items.

Data were fit using the ‘‘arm’’ [35] and the ‘‘lme4’’ [36] R

packages for R version 2.15.2.

For each of i print-pair comparisons (items) and j experts

(subjects), we define yi,j as

yi,j~

1

0

if print pair i is accurately classified

(correct identification or rejection) by expert j

if print� pair i is inaccurately classified

(false alarm or miss) by expert j

8>>>>><
>>>>>:

where Xi,j is a vector describing the features measured on a print

pair, b is a vector of coefficients (the fixed effects; one coefficient

for each feature), expertIDj is the expert-specific random effect,

which allows the intercepts to vary across experts, and printIDi is

the item-specific random effect. expertID and printID were

normally distributed.

The regression equation can be rewritten and expanded as:

logit( Pr (yi,j~1)~

b0zx1,i,jb1zx2,i,jb2z:::zxn,i,jbnzprintIDizexpertIDj

ð2Þ

where n is the number of predictors. In this form, it can be seen

that printID and expertID can be grouped with b0 as intercept

terms. Because printID and expertID are vectors, the equation

reflects that each combination of print and expert has its own

intercept term. It is this combined term (b0 + printIDi + expertIDj)

that varies across experts and items. Multi-level modeling allows

one to capture possible differences between individual subjects or

test items without fitting a separate regression equation for each

item (by applying a distribution over the terms that vary, in this

case printID and expertID; see [37]).

Individual differences among experts may arise due to

differences in experience, training, and other factors. These could

manifest themselves as different baselines of performance, or

intercept terms in the model. All else being equal, one expert

might do better with the exact same print pair than another

expert. This variability is captured by the expertID term in the

model. It is also possible to model item-specific (in this case, print-

pair-specific) effects; these are represented by printID. PrintID

captures differences in print comparison difficulty inherent to

individual print pairs and not related to the features used to predict

print pair accuracy. In constructing a model, it is assumed that the

error terms are uncorrelated; however, it is possible that print pair

errors are correlated across participants. Inclusion of the item-

specific term captures this potential non-independence (Baayen et

al., 2008). A likelihood ratio test showed that the model with the

predictors fit the data better than a null model with only the

random effects terms (x2(17) = 53.27, p,0.001).

Comparing a model that included the random expert effect

(expertID) to one that did not, we found that the Akaike

Information Criterion (AIC) was slightly smaller for the model

that included the effect, but the Bayes Information Criterion (BIC)

was smaller for a model that did not. Both of these measures are

information-theoretic metrics of goodness-of-fit that take into

account overfitting of the data with excess parameters. Qualita-

tively, a more parsimonious model that fit the data almost as well

would have a smaller AIC and BIC [38], [39]. The fact that the

criteria move in opposite directions when the model includes

expertID suggests that any differences between the models should

be treated with caution [38]. A likelihood ratio test comparing the

two models was significant (x2(1) = 4.79, p,0.05). ExpertID terms

varied from between 20.5260.69 to 0.4460.77. All values of

expertID were within two standard errors of zero. In terms of

Equation 2, this means that b0 + expertID was not reliably

different from b0. Based on these analyses, we felt justified in

averaging across experts and ignoring between-expert differences

in all subsequent modeling steps by removing the expertID term.

This same analysis could not justify excluding the print-pair

specific term, printID, and so it was retained in the model.

We simplified the model further by removing predictors (fixed

effects) based on minimization of the AIC [40]. A likelihood ratio

test revealed no statistically significant difference between a model

that included all of the predictors and the reduced model

(x2(11) = 9.55, p.0.05), indicating that the removal of predictors

increased parsimony without significantly impacting predictive

ability.

This analysis included all print pairs used in the study. This was

done because the goal of the study was to create a model of

difficulty for novel comparisons for which ground truth regarding

whether or not a print pair shares a common source is unavailable.

A separate analysis using only matching pairs showed highly

similar results, including all of the predictors that proved to be

reliable in the main analysis.

Table 1. Correlations between dependent measures.

Accuracy Confidence Difficulty

All Print Pairs Confidence 0.52***

Difficulty 20.50*** 20.91***

Response Time 20.48*** 20.59*** 0.71***

Print Pairs with Accuracy ,100% Confidence 0.36**

Difficulty 20.32** 20.89***

Response Time 20.22* 20.34** 0.45***

Note. *** p,0.001, ** p,0.01, *p,0.5.
doi:10.1371/journal.pone.0094617.t001
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The Accuracy Model
The model obtained for accuracy was:

Accuracy~logit{1(3:385z0:798 �Delta (L)

z0:534 �Mean Block Contrast (K){

0:471 � Area Ratio{0:451 � SD Block Contrast (LxK)

z0:419 � Sum of Ridge Measuresz

0:334 �DAEI (LxK)zprintID

Where L and K indicate whether the predictor applies to a

latent or known print image respectively, and LxK indicates

predictors that apply to print pairs. printID is the item-specific,

random effect. The parameters of the fitted model are shown in

Table 2. All predictors were significant (Wald’s z, ps,0.05), except

for Delta (L) and DEAI (LxK) which were marginally significant

(p = 0.054 and p = 0.053 respectively). It should be noted that there

is some disagreement on how to calculate p-values for the Wald

statistic in unbalanced, mixed-effects data due to difficulty in

determining the appropriate degrees of freedom and they should

therefore be interpreted with caution [32], [41], [42].

To get a more intuitive notion of model performance, we used

the predicted proportions from the logistic regression as estimates

of average performance across experts. The resulting fit was very

good (R2
adj = 0.91). We also computed the root mean squared

error (RMSE) by taking the sum of the squared differences

between predicted and observed values. Values closer to 0

indicated better performance. The error for the fitted model

(RMSEmodel = 0.06) was lower than for a null model that only

included the printID random effect (RMSEnull = 0.18).

Validation of the Regression Model for Accuracy
The dataset was split into training and testing sets. The training

set contained 180 (90%) of the print pairs (2063 individual

observations), and the testing set contained the remaining 20 print-

pairs (10%, 229 observations). The testing set print pairs were a

representative sample of the overall dataset, containing 12 pairs

with perfect accuracy and 8 pairs with less-than-perfect accuracy.

This was important in order to ensure that the training set did not

have too few pairs with low accuracies (there were only 24 pairs

with average accuracies below 80%). We replicated the model

selection procedure for data only from the training set. The same

predictors were selected with comparable coefficients, except for

Delta (L) which was replaced with Core (L). For both the full and

training datasets, the coefficients for these two predictors, Delta (L)

and Core (L), were not significantly different from zero and were

within two standard deviations of zero. Nevertheless, they could

not be excluded based on the selection procedure described above.

The fit of the model to the training set was comparable to the fit of

the model to the full set (R2
adj = 0.89, RMSEtrain = 0.07).

We used this regression model fitted to the training set to predict

accuracy for the withheld testing set of 20 print pairs. The

percentage of variance explained was worse for the testing set than

for the training set, suggesting some amount of overfitting

(R2
adj = 0.64). The error, however, was comparable between the

training and testing sets (RMSEtest = 0.07). The model’s predic-

tions are shown in Figure 4.

As a secondary assessment of model performance, we used the

model to predict whether at least one expert made an error on a

print pair. We divided the set of print pairs into two classes: those

that had 100% accuracy (perfect pairs) and those that had less than

100% accuracy (non-perfect pairs). A naı̈ve classification strategy

not based on the model and that assumes no errors are ever made

would have a classification accuracy of 107/180 or 59%. Using the

model fitted to the training set, we parametrically varied a

classification threshold such that print pairs with a predicted

Table 2. Predictors for accuracy model.

Fixed Effects Coefficient Estimates Standard Error z

Intercept 3.385 0.197 17.167***

Delta (L) 0.798 0.415 1.923

Mean Block Contrast (K) 0.534 0.164 3.268**

Area Ratio 20.471 0.156 23.010**

SD Block Contrast (LxK) 20.451 0.128 23.530***

Ridge Sum 0.419 0.154 2.715**

DEAI (LxK) 0.334 0.173 1.938

Random Effects Variance

printID 2.154

Note: *** p,0.001, ** p,0.01. p-values are reported here, but should be interpreted with caution. They were not used for model selection. Estimates are arranged by
coefficient magnitude in descending order (see text). L – latent, K – known print, LxK – interaction.
doi:10.1371/journal.pone.0094617.t002

Figure 4. Model performance. Model predictions of average
accuracy for 20 test print pairs plotted against observed average
accuracy.
doi:10.1371/journal.pone.0094617.g004
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accuracy greater than or equal to that threshold were classified as

perfect pairs and those below that predicted accuracy were

classified as non-perfect pairs. A threshold setting of 94% resulted

in the best classification performance of 164/180 or 91% correctly

labeled pairs.

The classification procedure described above was repeated for

predictions generated for each left out (testing) pair using the

threshold optimized on the training set. 75% (15/20) of the pairs

were correctly classified as either having perfect (9/15) or non-

perfect accuracies (6/15). The classifier was slightly better at

correctly identifying print pairs that had at least one error than

those that were perfect: 3 perfect prints were misclassified as

having an error and 2 non-perfect pairs were misclassified as

perfect.

Difficulty Ratings
Difficulty ratings showed a reliable negative correlation with

accuracy (see Descriptive Statistics, above), indicating that experts

had reasonable metacognitive awareness (i.e., print pairs that were

thought to be difficult tended to have lower accuracy across

experts). Accuracy for prints with an average difficulty rating

greater than 3 (on a scale of 1 to 6) was 84% compared to 91% for

all prints. We compared the fitted model from the previous section

to one that also included difficulty rating as a predictor.

The resulting model had significantly better goodness of fit than

the model described in the preceding section that did not

include difficulty rating as a predictor (x2(1) = 81.1, p,0.001,

RMSEmodel+difficulty = 0.05, R2
adj = 0.95).

We added difficulty rating as a predictor for the regression

model applied to the training set described above. Predictive

performance on the testing set was worse (decreased R2) than when

the difficulty rating was not included. However, classifier

performance on the testing set was slightly improved, with 85%

(17/20) of the pairs classified correctly. One perfect print was

misclassified as non-perfect, and two non-perfect prints were

misclassified as perfect. The discrepancy between the relatively

worse regression fit and the improvement in classifier performance

is due to two non-perfect print pairs that had a predicted accuracy

that was much lower than their true accuracy. These were

classified correctly as non-perfect, but contributed significantly to

the error of the regression fit.

The inclusion of difficulty ratings in applications of this model

must be made with caution. All other measures capture objective

features of the fingerprint image, while difficulty ratings are

subjective and therefore may vary across individuals and rely on

the good faith of the raters. Therefore, while difficulty rating may

be informative to include, in subsequent models we opt to

exclusively deal with objective factors. We return to this point in

the discussion.

Regression Analyses of Other Dependent Measures
Difficulty ratings, confidence ratings, and response times were

reliably correlated with accuracy and so ought to also depend on

print pair information content. If similar features are predictors for

many measures, then they are likely capturing something

important about the fingerprint images. Here, we fit models of

the other dependent measures to the training dataset as a further

validation step: the importance of particular image features as

valid predictors of accuracy is bolstered if those same features are

shared in models of other dependent measures.

Unlike accuracy, response time varied greatly across experts,

with some experts taking much longer times on comparisons that

other experts evaluated fairly quickly. There are several possible

reasons for this variability. Less experienced examiners may take

longer to come to the same conclusion than a seasoned examiner

(a perceptual fluency that comes with expertise; see [12]). Some

subjects may have completed the comparison quickly, but then

took time to deliberate confidence and difficulty ratings since

response time was recorded only once all answers were given, and

not when the subject selected ‘‘match’’ or ‘‘non-match’’. Also, the

self-confidence of the examiners in their abilities may have affected

response time. Only a small component of the variability in

response time was likely to be due to differences in attention or

interest since such differences would presumably have led to

greater variability in accuracy, which was not observed.

We fit a linear, mixed-effects model to normalized response time

data for the training set following the same model selection steps as

for the accuracy model described above. Due the variability in

response time across experts, the random effect of expertID was

retained in the model. The results of the regression are shown in

Table 3. Three features, Core (L), Mean Block Contrast (K), and

SD Block Contrast (L) were found to be predictive of response time

using the same model selection procedure that was used for the

analysis of predictors of comparison accuracy. The latter two

predictors were also selected in models of accuracy (SD Block

Contrast as part of an interaction term). Visibility of cores instead

of deltas was selected as a predictor of response time. Interestingly,

core visibility also appears as predictor when the model is fit to a

testing set. Visibility of a core might make comparison of latents

and known prints much easier: if the cores do not match then no

further examination is required, so a comparison can be made

quickly. Absence of a core could also make it difficult to orient the

latent and known prints, since, as noted earlier, these features

could act as landmarks for orienting two prints during comparison.

Linear mixed-effects models were also fit separately for difficulty

and confidence ratings. Like response time, there was a great deal

of inter-subject variability for both measures. Variability in

confidence and difficulty ratings may be due to differences in

degree of expertise and self-confidence in the task. Variability in

ratings may also be due to differences in interpretation of the

rating task and therefore in response strategy. One expert, for

example, responded with maximum confidence to all comparisons,

saying to the experimenter that in real-world situations an expert

would be 100% confident or rate a comparison as inconclusive.

Table 4 contains the coefficient estimates for the model of

difficulty rating. As in the model of accuracy, Ridge Sum, Area

Ratio, and Core (L) were selected as predictors. Similar to

response time, difficulty was also negatively correlated with

accuracy, so the regression coefficients have opposite sign to those

in the accuracy model. In addition, visibility of Cores in the known

print and the interaction of the Core terms were also selected.

Delta (L) appears in this model as well as in the model of accuracy.

A similar model was fit for confidence ratings. The results are

shown in Table 5. Identical predictors with comparable magni-

tudes were selected as for the difficulty rating model. The

coefficients have opposite sign since high difficulty ratings

correspond to low confidence ratings. Because difficulty and

confidence are so strongly correlated (20.91), it is not surprising

that the exact same predictors are selected for in both models.

Discussion

We evaluated expert performance on a fingerprint matching

task. Experts were highly accurate, committing relatively few

errors despite limited access to resources and restricted viewing

time. Using a number of potential predictors derived from image

processing analyses, we were able to identify, using regression

analyses, several image characteristics predictive of expert

Predicting Fingerprint Match Difficulty

PLOS ONE | www.plosone.org 10 May 2014 | Volume 9 | Issue 5 | e94617



performance. Six features in particular were found to be important

predictors of accuracy: Ridge Sum, Area Ratio, visibility of Deltas

in the latent print, Mean Block Contrast of the known print,

interaction between SD Block Contrast for latents and known

prints, and the interaction between DEAI (deviation from

expected average intensity) for the latents and known prints.

Taken together, these features explain 64% of the variance in

performance accuracy on a novel set of print pairs that were

withheld from those used to train the model. A classifier derived

from the full data set identified the pairs on which at least one

expert made a mistake with 91% accuracy, and a similar model

derived from 90% of the data classified novel pairs with 75%

accuracy.

Many of the same image characteristics were also predictors of

subjective difficulty ratings, confidence ratings, and response times.

We also found that difficulty ratings, a subjective measure, were

moderately correlated with accuracy and could improve the

performance of the classifier on novel print pairs.

There are several interesting observations that can be made

about the set of features that were found to be predictive of

accuracy (Table 2). First, four of the six features were relational, in

the sense that they were calculated based on information

contained in both prints that make up a comparison pair. This

is a desirable feature of the model since a particular print could

arise in two separate comparisons (e.g., a latent print compared to

a matching and a non-matching print). In real world scenarios, a

single latent print may be compared to many known prints. In

cases where one of the prints in the study was of very poor quality,

then such relational features might not matter. For example, if

Mean Block Contrast (K) is low (i.e., for a very washed out or very

dark print), then a comparison would be difficult irrespective of

some relational features such as Area Ratio. Conversely, if two

prints do not share Level 1 pattern type, they will not make for a

difficult comparison regardless of the quality and quantity of

information in each. In general, however, error rates and difficulty

seem likely to be primarily characteristics of print comparisons,

rather than individual prints, as difficulty for actual non-match

comparisons will be most acute when the prints share significant

similarities, and difficulty for actual matches will be most acute

when latent quality or quantity is limited or misleading. Results in

our regression models support this idea.

Second, the features within the model correspond to many types

of information content. Mean Block Contrast (K), SD Block

Contrast (L x K), and DEAI (L x K) capture properties of the

image itself (i.e., dark or light, uniform or not). Area Ratio and

Delta (L) reflect large-scale or configural (Level I) characteristics of

prints, and Ridge Sum relates to visibility of fine detail in the

image such as Level II features (see Introduction). These outcomes

fit broadly with the idea that fingerprint examiners access different

kinds of information in making comparisons and that basic image

characteristics determine the detectability of relevant features and

patterns.

Third, the signs of the coefficients provide appealing interpre-

tations. That high contrast and clarity of ridges are predictors of

Table 3. Predictors for response time model.

Fixed Effects Coefficient Estimates Standard Error t

Core (L) 20.234 0.074 23.149**

Intercept 0.226 0.085 2.646**

Mean Block Contrast (K) 20.177 0.038 24.647**

SD Block Contrast (L) 20.105 0.038 2.748**

Random Effects Variance

printID 0.216

expertID 0.226

Note: ** p,0.01. Estimates are arranged by coefficient magnitude in descending order (see text). L – latent, K – known print, LxK – interaction.
doi:10.1371/journal.pone.0094617.t003

Table 4. Predictors for difficulty rating model.

Fixed Effects Coefficient Estimates Standard Error t

Intercept 2.748 0.301 9.121***

Core (L x K) 22.104 0.722 22.913**

Core (L) 1.719 0.705 2.437**

Core (K) 0.935 0.324 2.883**

Delta (L) 20.778 0.191 24.082***

Ridge Sum 20.207 0.079 22.631**

Area Ratio 0.202 0.078 2.571**

Random Effects Variance

printID 1.076

expertID 0.301

Note: *** p,0.001, ** p,0.01. Estimates are arranged by coefficient magnitude in descending order (see text). L – latent, K – known print, LxK – interaction.
doi:10.1371/journal.pone.0094617.t004
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accuracy should not be surprising. The DEAI measure increases as

the average pixel intensity approaches 127.5, the mean expected

pixel intensity for an image that contains 50% white and 50%

black pixels. We assumed that this proportion would correspond to

greater clarity, since a mostly light or dark image could be difficult

to analyze. The positive coefficient found for this measure in the

accuracy model indicates that as the proportion of white to black

pixels approaches 0.5 in the latent and known print, accuracy

increases.

Visibility of deltas in the latent image also had a positive effect

on accuracy perhaps because they provided orienting information,

making it easier to match and compare feature locations on the

latent and known print. Accuracy decreased as SD Block Contrast

(L x K) and Area Ratio increased. When SD Block Contrast is

high in both the latent and known print, accuracy is low. In

general, high variability in Block Contrast picks up variable image

quality across image regions (e.g., due to gaps or smudging in

portions of a print). In smudged regions, pixels would be uniformly

dark, while in clear regions pixel intensity would be more variable,

leading to higher contrast measures in those areas. If an image

were more uniform in pixel intensities, it would have lower

variability in contrast across regions and therefore lower SD Block

Contrast measures. Area Ratio had a large, negative coefficient.

This at first seems counterintuitive; higher area ratios tend to

correspond to larger areas of latent prints. One possible

explanation might be that in the process of creating a database

of print pairs with varying size latents that were not too difficult,

small latents could perhaps have tended to be of higher quality

while larger latents tended to be of lower quality. However, the

evidence suggests that this explanation is not probable, because in

fact, print area ratio and ridge reliability (perhaps the variable

most directly corresponding to subjective image quality) were not

correlated (r = 0.017, p = 0.415). Instead, we believe that latent

prints with larger areas may be associated with more difficult

comparisons because it is more difficult to identify distinctive

regions of the image when the print is large. Since non-matching

known prints were chosen by submitting the latents to an AFIS

system, and selecting a non-match deemed to be the most similar

of those available, the non-matches likely shared many features. If

experts were only shown a small latent region, it might have been

easier to compare that region to the corresponding region on the

known print and quickly exclude mismatched pairs as compared to

a larger latent image with more or larger, accidentally matching

regions.

Difficulty ratings were used in two ways to add to the modeling

results. We used difficulty rating itself as a predictor of accuracy.

Difficulty ratings improved the fit of a model trained on all of the

print pairs, but did not improve the predictive power of a model

on a testing set of withheld prints. Classification performance,

however, was improved. While ratings are not objective, there was

nevertheless a moderate correlation between difficulty ratings and

accuracy, suggesting that experts were reasonably aware of which

comparisons were difficult. However, outside the experimental

setting, it may be impractical to expect to be able to get a group of

experts to provide ratings.

Difficulty ratings, confidence ratings, and response times were

also evaluated as separate dependent measures. Because these

measures correlated moderately with accuracy, we expected that

similar features should be selected for when the same features were

used to predict other dependent measures. Four of the six features

that appeared in the accuracy model also appeared in the other

models. A fifth feature, SD Block Contrast (K), which was included

as part of an interaction term in the accuracy model appeared in

the model of response time. Some features, such as visibility of

cores, appeared in the other models but not in the model of

accuracy. Cores and deltas are global features. Their presence or

absence can be used as a quick measure of assessing difficulty.

However, global features on their own are not sufficient to make a

comparison. Accuracy, therefore, depends to a greater extent on

image quality, relational information, and ridge information.

These results suggest that physical characteristics derived

through image processing methods may be valuable in predicting

expert difficulty and error rates for print pairs. Given that the

present work is the first effort we know of to systematically predict

errors from physical characteristics of print pairs, the predictive

results are highly encouraging. Validation across larger data sets

would be desirable for practical use of a predictive model such as

the one derived here, further developments along these lines, along

with continuing progress in characterizing the physical quality of

prints (e.g., [9]) will likely prove to have practical value in

quantifying the likely evidentiary value of expert assessments of

fingerprint matches.

While these results on modeling print-pair difficulty are

encouraging, there are also many differences between the

paradigm used in the present study and the actual process of

fingerprint comparison. In forensic settings, experts typically have

unlimited evaluation time and access to image processing tools

that were not available in the present study. In addition, examiners

Table 5. Predictors for confidence rating model.

Fixed Effects Coefficient Estimates Standard Error t

Intercept 5.248 0.247 21.255***

Core (L x K) 2.034 0.564 3.604***

Core (L) 21.644 0.551 22.983**

Core (K) 20.920 0.253 23.631***

Delta (L) 0.581 0.149 3.899***

Area Ratio 20.162 0.062 22.647**

Ridge Sum 0.155 0.062 2.517**

Random Effects Variance

printID 0.616

expertID 0.488

Note: *** p,0.001, ** p,0.01. Estimates are arranged by coefficient magnitude in descending order (see text). L – latent, K – known print, LxK – interaction.
doi:10.1371/journal.pone.0094617.t005
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typically are not in a ‘forced-choice’ situation, and may decide that

a real-world comparison is inconclusive rather than reaching a

conclusion about match or non-match.

Despite these limitations, there are several important dimen-

sions to these results. The experiment shows that even under

constraints, experts were highly accurate. More than half of the

print pairs had perfect accuracy, even in circumstances where the

examiners’ time was limited, their access to processing tools

constrained, and in which they were not permitted to select the

option of ‘‘inconclusive’’. Relatively few studies have examined

expert performance in fingerprint matching tasks, and this study

adds to that body of research. Given the constraints imposed on

examiners in this study, we would suspect that error rates in

forensic laboratory settings could well be lower than those that we

observed. For example, it is possible that had examiners had the

option of choosing ‘‘inconclusive,’’ they might have elected to

make that choice for some of the prints for which we saw the

highest error rates. However, it is also possible that they might

have selected ‘‘inconclusive’’ for prints for which they performed,

individually or in aggregate, with a high degree of accuracy. Our

data do not permit us to assess either of these possibilities; but this

example illustrates why taking these data as offering an ‘‘error

rate’’ would be both misleading and inappropriate.

Experiments in ecologically valid settings are difficult to

conduct. Compared to this experiment, fingerprint examiners in

actual practice encounter multiple factors that may improve

accuracy (such as more time to conduct the comparisons, more

access to tools, verification checks, etc.), as well as factors that can

reduce accuracy (such as biasing influences from extraneous

contextual case information, or pressures from investigators [19],

[43]). Given the significant differences between our experimental

conditions and ecologically-valid fingerprint identification, it is

important to state clearly that the point of this experiment is not to

measure error rates, and it would be a mistake to take these data as

direct evidence of a specific error rate for the field [7]. Rather, we

are interested in identifying the features that correlate with

difficulty, in order to understand both what features of print pairs

affect difficulty, and to begin to understand how error rate might

vary with print difficulty.

This present study is therefore an important step in ‘‘unpack-

ing’’ error rates, an endeavor that has great importance to forensic

science and the legal system. The mere fact that some fingerprint

comparisons are highly accurate whereas others are prone to error

has a wide range of implications. First, it demonstrates that error

rates are indeed a function of comparison difficulty (as well as

other factors), and it is therefore very limited (and can even be

misleading) to talk about an overall ‘‘error rate’’ for the field as a

whole. In this study, more than half the prints were evaluated with

perfect accuracy by examiners, while one print was misevaluated

by 91 percent of those examiners evaluating it, and numerous

others were misevaluated by several examiners. This distribution

of errors strongly indicates that error rates do vary depending on

the visual content of the specific comparisons. This experiment

therefore provides strong evidence that print comparisons do vary

in difficulty and that these variations also affect the likelihood of

error.

Second, this study lays down a foundation for finding objective

print characteristics that can quantify the difficulty of the

comparison. The model we offer provides both evidence for what

specific visual criteria seem to affect difficulty, as well as a model

for combining these criteria to best predict accuracy. While further

study regarding this model and its effectiveness in circumstances

more ecologically valid than what was undertaken here is

warranted before making definitive claims, this model illustrates

the significant potential for creating objective measures of difficulty

for print pairs.

Third, a more sophisticated understanding of the relationship

between error rate and difficulty should be important for the

courts in weighing fingerprint evidence (and the need for better

information about the strengths and limitations of latent finger-

print comparison and other forensic techniques that has been

highlighted by the NAS inquiry into forensic science [3]). Courts

are instructed, when assessing expert evidence, to focus on the

‘‘task at hand’’, and this research helps to show that fingerprint

examination may vary in difficulty in ways that may be relevant to

its evaluation as legal evidence [44], [45]. More nuanced

assessments of fingerprint task difficulty might, for example, affect

how a judge understands the admissibility of a specific fingerprint

comparison, or what degree of certainty the expert will be allowed

to express about a conclusion, or it might impact the weight or

probative value given to a specific match conclusion by the fact-

finder [46].

Fourth, the implication of these findings go beyond the

courtroom; they also provide vital insights that can considerably

enhance the work of forensic laboratories. For example, similar to

medical triage, forensic laboratories may benefit from considering

how the need for different procedures and checks can be made to

fit the difficulty of the comparison (e.g., ‘‘the need for verification,

and what sort of verification, may be highly dependent on the

difficulty of the decision and the type and likelihood for a potential

error. In cases with greater cognitive difficulty, when errors are

more likely, more stringent verification procedures are needed;

whereas more simple and straightforward prints may not require

the same level and type of verification.’’ [47]).

Fifth, the understanding of what makes some comparisons more

difficult than others has implications for the selection and training

of fingerprint examiners. During examiner training, benchmarks

and skill sets can be set as criteria to ensure candidates have the

cognitive abilities needed to perform the tasks. Better understand-

ing of which print comparisons are easier or more difficult can

improve both training materials and the assessments of trainees.

Training needs to have clear cognitive goals, and must use

appropriate materials to develop and evaluate trainees’ perceptual

learning [12]. Understanding which comparisons are more error-

prone can help improve both the design of training materials, to

ensure a range of difficulty, and can also help evaluators assess

performance in a more nuanced way.

Supporting Information

Figure S1 Screenshot of a sample trial from the
experiment. Examiners could use the keys in the windows to

change position or zoom level. Responses were made by clicking

on the buttons shown in gray. Once all responses were provided, a

button appeared allowing the user to advance to the next trial.

(TIF)

Figure S2 Global Feature GUI. The interface used for

counting deltas, marking the presence or absence of a core, and

labeling the core type.

(TIF)

Acknowledgments

Portions of this research were presented at the annual meeting of the Vision

Sciences Society (VSS) and European Conference on Visual Perception (ECVP) in

2013. We thank Clara Sao, Jenny Chun, and Rachel Older for help in the

data collection. And we gratefully acknowledge all of the participants who

volunteered to take part in the construction of the database and the

experimental task.

Predicting Fingerprint Match Difficulty

PLOS ONE | www.plosone.org 13 May 2014 | Volume 9 | Issue 5 | e94617



Author Contributions

Conceived and designed the experiments: IED JLM PJK GE PG EM DC

TG. Performed the experiments: GE IED DC. Analyzed the data: GE PG

TG. Contributed reagents/materials/analysis tools: IED GE PG TG EM

DC. Wrote the paper: IED JLM PJK GE PG TG.

References

1. Cole SA (2005) Is fingerprint identification valid? Rhetorics of reliability in

fingerprint proponents’ discourse. J Law Policy 28: 109–135.
2. Mnookin JL (2008b) The validity of latent fingerprint identification: Confessions

of a fingerprinting moderate. Law Prob Risk 7: 127–141.
3. National Research Council, National Academy of Sciences (2009) Strengthening

Forensic Science in the United States: A Path Forward. Washington, DC:

National Academy Press.
4. Ulrey BT, Hicklin RA, Buscaglia J, Roberts MA (2011) Accuracy and reliability

of forensic latent fingerprint decision. Proc Natl Acad Sci U S A, 108: 7733–
7738.

5. Tangen JM, Thompson MB, McCarthy DJ (2011) Identifying fingerprint

expertise. Psychol Sci 22(8): 995–997.
6. Busey TA, Vanderkolk JR (2005) Behavioral and electrophysiological evidence

for configural processing in fingerprint experts. Vision Res 45: 431–448.
7. Koehler JJ (2008) Fingerprint error rates and proficiency tests: What they are

and why they matter. Hastings Law J 59: 1077–1100.
8. Dror IE, Mnookin JL (2010) The use of technology in human expert domains:

challenges and risks arising from the use of automated fingerprint identification

systems in forensic science. Law Probab Risk 9: 47–67.
9. Pulsifer DP, Muhlberger SA, Williams SF, Shaler RC, Lakhtakia A (2013) An

objective fingerprint quality-grading system, Forensic Sci Int, 231: 204–207.
10. Chase WG, Simon HA (1973) Perception in Chess. Cogn Psychol 4: 55–81.

11. Schneider W, Shiffrin RM (1977) Controlled and automatic human information

processing: I. Detection, search, and attention. Psychol Rev 84: 1–66.
12. Kellman PJ, Garrigan P (2009) Perceptual learning and human expertise. Phys

Life Rev 6: 53–84.
13. Gibson EJ (1969) Principles of perceptual learning and development. New York:

Prentice Hall.

14. Kellman PJ (2002) Perceptual learning. In: Pashler H, Gallistel CR, editors.
Stevens’ handbook of experimental psychology, vol. 3 (3rd edition). New York:

John Wiley & Sons. pp. 259–299.
15. Dror IE, Stevenage SV, Ashworth A (2008) Helping the cognitive system learn:

Exaggerating distinctiveness and uniqueness. Appl Cogn Psychol 22: 573–584.
16. Bryan WL, Harter N (1899) Studies on the telegraphic language: The acquisition

of a hierarchy of habits. Psychol Rev 6: 345–375.

17. Kellman PJ, Massey CM (2013) Perceptual Learning, cognition, and expertise.
In: Ross BH, editor. The Psychology of Learning and Motivation, Vol. 58.

Amsterdam: Elsevier Inc. pp. 117–165.
18. Dror IE, Cole SA (2010) The vision in ‘‘blind’’ justice: Expert perception,

judgment, and visual cognition in forensic pattern recognition. Psychon Bull Rev

17: 161–167.
19. Dror IE, Rosenthal R (2008) Meta-analytically quantifying the reliability and

bias ability of forensic experts. J Forensic Sci, 53: 900–903.
20. Hall LJ, Player E (2008) Will the introduction of an emotional context affect

fingerprint analysis and decision-making? Forensic Sci Int 181: 36–39.
21. Dror IE, Charlton D (2006) Why experts make errors. J Forensic Ident 56: 600–

616.
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