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Abstract 

Decades of research have demonstrated that students face 
critical conceptual challenges in learning mathematics. As 
new adaptive learning technologies become ubiquitous in 
education, they bring opportunities both to facilitate 
conceptual development in more focused ways and to gather 
data that may yield new insights into students’ learning 
processes. The present study analyzes data archives from a 
perceptual learning intervention designed to help students 
master key concepts related to linear measurement and 
fractions. Using algorithmic data coding on a database of 
78,034 errors from a sample of sixth graders, both conceptual 
errors and other errors were captured and analyzed for change 
over time. Results indicate that conceptual errors decreased 
significantly. This approach suggests additional ways that 
such datasets can be exploited to better understand how the 
software impacts different students and how next generations 
of adaptive software may be designed to code and respond to 
common error patterns in real time. 
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Introduction 
Prior research on students’ conceptual development in 
mathematics has identified a number of areas in which 
students persistently make characteristic conceptual errors 
that are often resistant to standard instruction or procedural 
practice (National Research Council (NRC), 2001; 
Vosniadou & Verschaffel, 2004). The present study 
investigates types of student errors and patterns of change in 
their performance over time using data archives from sixth 
graders interacting with an educational software module that 
was explicitly designed to address such conceptual errors in 
the domain of units of linear measurement on rulers with 
both integer and fractional subdivisions. These data were 
generated as part of a large randomized control trial (RCT) 
by students in 30 classrooms that were randomly assigned to 
an intervention condition that used four perceptual learning 
software modules (Kellman & Massey, 2013) focused on 
fractions and measurement over the course of their sixth 
grade year (Kellman, Massey & Son, 2010).  Data reported 
here are from the Linear Measurement Perceptual Learning 
Module (PLM). Separately reported data from this ongoing 

study indicate that the PLM intervention demonstrates 
significant learning gains compared to a control condition 
(Bowden, Massey & Kregor, 2015; Scull, 2015). For the 
content of interest in the present analysis, HLM analyses 
from the RCT indicate a significant treatment effect of the 
PLM condition, replicated across two cohorts, on a test 
consisting of multiple choice and open-ended items focused 
on various aspects of linear measurement drawn from large-
scale standardized assessments. The PLM is hypothesized to 
promote students’ conceptual understanding by enabling 
them to recognize the specific properties of units used to 
measure continuous extents, to apprehend how whole units 
and fractional parts of units are represented and enumerated 
on rulers, and to overcome tendencies to inappropriately 
apply schemes for counting discrete objects to linear 
measurement. The present study evaluates this mechanism 
by examining whether students made the types of 
conceptual errors that would be anticipated based on the 
existing research literature on conceptual development for 
linear measurement and fractions, and, if so, whether the 
software was effective in helping students overcome known 
error patterns and move to correct responses. 

While this analysis shares some general goals with 
approaches used in educational data mining and learning 
analytics (Siemens & Baker, 2010), rather than using 
machine learning techniques and automated algorithms to 
discover patterns in responses or to model students and 
predict responses, the study instead uses algorithmic coding 
to classify error types predicted from the research literature. 
Whereas prior cognitive studies of conceptual change in 
mathematics—particularly microgenetic studies examining 
learning over time—have generally involved intensive study 
of relatively small numbers of students interacting with a 
constrained set of tasks or problems, the current study 
allows us to examine and code detailed records from 716 
sixth graders, each of whom completed an average of 215 
open-ended interactive problems over the course of multiple 
weeks. A total of 157,147 completed problems yielded a 
pool of 78,034 errors for analysis. 

Conceptual Challenges in Linear Measurement 
Two areas in which U.S. elementary students perform 
particularly poorly are fractions and measurement (National 
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Mathematics Advisory Panel, 2008). Research studies 
indicate that many students do not recognize that units of 
linear measurement must have continuous extent, and they 
instead impose discrete counting schemes on ruler 
measurement, counting numbered hash marks rather than 
the intervals between marks (Bragg & Outhred, 2004); 
Mitchell & Horne, 2008). A familiar result of this 
misunderstanding is that many students are baffled as to 
why rulers do not begin at “1.” Students also demonstrate 
consistent errors when measuring with “broken” or partial 
rulers. Other conceptual difficulties include failing to 
distinguish between position and distance on a ruler or 
number line, and not understanding how fractions are 
represented by subdivisions of units (Ball, 1993; Bright, 
Behr, Post & Wachsmuth, 1988; Lehrer, Jaslow & Curtis, 
2003; NRC, 2001). Also challenging are mapping mixed 
numbers to rulers and reconciling multiple labels for the 
same point (e.g., 2/4 and 4/8). Students typically learn a 
standard computational procedure for converting mixed 
numbers to improper fractions, but they often lack the 
ability to flexibly regroup fractions and whole numbers, 
and, in the context of relating mixed numbers to positions 
and distances on rulers, the computational procedure may 
not be productive. The Linear Measurement PLM was 
specifically designed to address these conceptual 
difficulties, using a perceptual learning approach in which 
students directly interact with the targeted structures, 
relations, and representations across a large and varied set of 
problems with customized animated feedback on every trial.  

 
Perceptual Learning Software 
Perceptual learning (PL) refers to a process by which 
individuals improve their ability to accurately and fluently 

extract information coming from the environment in some 
domain (Gibson, 1969; Kellman & Massey, 2013). This 
efficient pick-up of information characterizes experts, who 
selectively attend to relevant features, recognize meaningful 
patterns, extract higher-order relational structure, and ignore 
irrelevant variation. Typically, PL occurs through repeated 
experience discriminating and classifying a wide variety of 
instances as one engages in a given activity. Recent research 
(Kellman, Massey & Son, 2010) has demonstrated that 
principles of perceptual learning can be incorporated into 
learning software and used to accelerate fluent, expert-like 
information pick-up in academic symbolic domains such as 
mathematics and chemistry. Although the term “perceptual” 
may seem to contrast with conceptual understanding 
(Kellman & Massey, 2013), in fact, the fluent apprehension 
of fundamental structures and relationships is often a critical 
foundation for conceptual understanding. In the present 
work, PL training is aimed at improving learners’ 
understanding of the structure of whole and fractional 
measurement units and invariant patterns in how they are 
represented on rulers and on number lines more generally.  

The graphic interface for this PLM consists of an 
interactive display showing a ball on top of a ruler, as 
illustrated in Figure 1, which provides examples of a simple 
integer problem and a more complex fraction problem. 
Information given at the top of the screen identifies the 
ball’s starting point and then gives either the distance the 
ball should move and asks the student to indicate the 
endpoint, or gives the endpoint and asks the student to input 
the distance it would travel. When the student enters a 
response, the ball carries out the action, followed by 
animated feedback indicating whether the response was 
correct, and, if not, showing how the correct answer 
compares. On each learning trial, the student sees a unique 

 

 
 

 
 

Figure 1: Examples of a simple integer problem (top) and a difficult fraction problem (below). 



problem drawn from a very large set of problems organized 
into eight subtypes, based on whether the problems involve 
fractions or only integers, whether users enter their 
responses by moving markers on the ruler or by typing in 
numerical values, and by whether the unknown in the 
problem is the final endpoint or the distance traveled on the 
ruler. Half of the categories consist of simpler integer 
problems and half are more difficult fraction problems. 
(Thus one category would be fraction problems on which 
the distance traveled is given and the user types in the 
endpoint.) Other problem variations that cut across these 8 
categories include whether the ruler is fully or partially 
labeled; whether the start/end point is 0, 1, or some other 
point on the ruler (including values in the hundreds); 
whether the direction of movement is to the right (addition) 
or to the left (subtraction); and whether the ruler is over-
partitioned or congruently partitioned for the units given in 
the problem. 

The software automatically captures time-stamped data, 
recording every problem seen, the response entered, and the 
response time (or time-out if no response is entered within 
90 seconds). The resulting dataset was analyzed to examine 
(a) the frequency with which students made the specific 
conceptual errors anticipated from the research literature on 
measurement and fractions, (b) what other kinds of errors 
students made, and (c) whether and how error rates changed 
as students used the software.  

Method 
Subjects 
Participants in this study were 716 sixth graders in 30 
classrooms in schools in a large Northeastern city serving 
predominantly low-income and minority students. To be 
included in the analysis, each student had to complete at 
least 20 problems using the Linear Measurement PLM but 
did not have to complete the entire PLM. Students used the 
web-based software during the school day as part of their 
normal mathematics curriculum. 

 
Procedure 
Each unique problem in the software database can be 
deconstructed into a set of problem parameters. To code 
errors algorithmically in the large set of student data from 
participants in this study, we used the problem parameters 
associated with each problem to create algorithms that 
operationally define a set of targeted conceptual errors, with 
a particular focus on miscounting of hash marks and 
regrouping errors involving fractions. We also developed 
algorithmic codes for errors related to how students encoded 
the problems and interacted with the software interface. All 
codes were built using STATA. Descriptions of the error 
categories and how they were coded are given below. 

 
Hash Mark Errors Hash Mark errors occur when students 
focus on discrete hash marks as the unit of measurement and 
count them starting from one, resulting in answers that are 
systematically wrong by one. Students can make similar 

errors with fractional parts of units if they count secondary 
hash marks on a ruler or number line the same way. When 
fractions are involved, a student may make the hash mark 
error only on the integer hash marks, on both the integer 
hash marks and the fraction hash marks, or only on the 
fraction hash marks. We designated the first case, along 
with hash mark errors made on integer problems, as Hash 
Mark Integer errors, and the latter two cases as Hash Mark 
Fraction errors. 
 
Regrouping Errors By design, many of the fraction 
problems in the learning set involve redistributing fractional 
units from or into integer units across an integer boundary 
(e.g., the bottom problem in Figure 1.) For right-going 
Endpoint Unknown problems, this occurs when the sum of 
the fractional units is greater than “1”; for left-going 
Endpoint Unknown problems and all Distance Unknown 
problems, which require subtraction, this occurs when the 
fraction to be subtracted is greater than the fraction from 
which it is subtracted. Students often made a characteristic 
Regrouping error when confronted with boundary-crossing 
problems. Figure 2 illustrates several examples of such 
errors on a typical problem. A student would use the correct 
numerical operation for the integers in the mixed numbers, 
but use any number of different strategies to deal with the 
fraction parts: reversing the place of the fractions in order to 
avoid subtracting the larger from the smaller; answering 
with either of the given fractions and ignoring the other; or 
ignoring the fractions entirely. The result for any one of 
these strategies is nevertheless predictable: an integer 
answer that is, correctly, the sum or difference of the given 
integer values but with some incorrect fraction or no 
fraction appended. This conceptual difficulty is analogous to 
well-known “buggy algorithms” involving borrowing errors 
across place value columns in multi-digit arithmetic and in 
mixed-number subtraction (Brown & Burton, 1978; Fuson, 
1990; Scott, 1962). In each case, students fail to process the 
relational structure of adjacent place values or of fractional 
and integer units. 

 

 
 
Figure 2:   Schematic illustration of possible process for 

regrouping errors on a problem with a given start point of   
3 ⅜ and distance traveled of 5 ⅞. 

 
Problem Encoding Errors In addition to algorithms to 
capture the targeted conceptual errors described above, 
algorithms were also developed to capture errors that are 
specific to the Linear Measurement PLM problem 
presentation interface. As is often the case in mathematics 
problem solving, students do not always accurately encode 
the problem structure in terms of what information is given 



and what is to be found. All problems in the PLM involved 
a triad of a start point, an endpoint, and a distance traveled. 
The start point was always one of the given values, while 
endpoint and distance varied between given and unknown 
roles. One type of problem encoding error occurred when 
students confused whether distance or endpoint was the 
unknown. A second type of encoding error occurred when 
students did not correctly encode the direction of travel 
(e.g., answered as if the ball moved rightward when the 
problem specified that it moved to the left). 
 
Given Information Errors Responses were coded as Given 
Information errors when students entered one of the given 
values as their answer. Students might do this as a default 
response when they cannot process the problem structure 
(similar to “number grabbing” that has been observed when 
students solve word problems (Bell, Greer, Grimison & 
Mangan, 1989; NRC, 2001)), or this kind of error may 
represent a type of disengaged response in which students 
enter a given value just to enter something. 

 
Unproductive Responses Unproductive Response errors 
were coded when students pressed “Enter” without giving 
an answer, timed out without entering any answer, or 
entered a value that was out of range for the given problem. 
 
Parameter data for each problem were used to create a 
general code for each error type that would be applicable for 
all problems or for all problems within a particular subset. 
For example, a directionality error variable was defined if, 
for left-going Endpoint Unknown problems, the student’s 
answer for the endpoint is equal to the start point plus the 
distance. Not all types of errors are applicable for every type 
of problem, and so the parameter data were used to narrow 
the test space for particular error codes (e.g. Regrouping 
errors were only tested on boundary-crossing problems). It 
is important to note that for nearly all the error codes, the 
student’s answer was flagged only if it corresponded to the 
answer that would be given if only the named error were 
made. That is, a student could have concatenated multiple 
errors—e.g., a Directionality error and a Hash Mark error—
and this would not be captured by the error code. Given the 
risk of miscoding responses unrelated to a complex error 
combination when operating on a small answer space, 
however, we chose to avoid concatenating errors. 

 
Results 

Out of 78,034 total errors, 38,337 (49.1%) were coded as 
belonging to a single well-specified error category. An 
additional 15,753 errors (20.2%) were captured by more 
than one error code, since the same error could have been 
made by more than one reasoning process. Since coding of 
these errors is inherently ambiguous, we removed them for 
the remainder of the analysis. Errors that were not captured 
by the algorithmic codes are not considered further in this 
analysis. Because not all errors can occur on every type of 
problem, analyses below indicate when the reported 

frequencies are out of the total of eligible problems rather 
than all problems. 

 Table 1 shows the number of students achieving each 
mastery level. Just over half of the students (52.8%) 
mastered the entire module, and 60.5% mastered at least 6 
of the 8 categories. (To master a category, a student had to 
complete at least 4 of the most recent 5 problems of that 
type correctly.)  

 
Table 1: Mastery level by number of students  

 
Mastery Level N Students % Students 

0 23 3.2% 
1 15 2.1% 
2 25 3.5% 
3 30 4.2% 
4 106 14.8% 
5 84 11.7% 
6 44 6.2% 
7 11 1.5% 
8 378 52.8% 

(Total N of Students = 716) 
 

Table 2 shows the frequency and percentage of each of 
the captured error types as well as the number of students 
who made each type of error at least 5 times. As the table 
indicates, just about half of all errors committed were 
uniquely captured by the individual codes specified above. 
Approximately one-fifth of the total errors were the 
anticipated conceptual errors related to regrouping and to 
misreading hash marks. Errors captured by multiple codes 
are not included. 

 
Table 2: Frequency of captured error types 

 

Error 
Total 
Errors 
Coded 

% of Errors 
All Students 

N Students 
with error 
5+ times 

Unproductive 
Responses 11,080 14.2% 479 

Given Information 9,588 12.3% 463 
Regrouping 8,363 10.7% 464 
Hashmark Fraction 5,073 6.5% 382 
Problem Encoding 2,533 3.2% 193 
Hashmark Integer 1,700 2.2% 111 
Total Errors/Total N 78,034  716 

Total Problems = 157, 147 
 
To examine changes in the rates of various error types 

over time, each student’s time-ordered sequence of trials 
was divided into ten phases, from early trials through late 
trials. Since students completed different numbers of trials, 
the number of trials falling within each phase is relative to 
the individual student.  

As Figure 3 illustrates, learners typically make steady 
progress through the PLM, accumulating up to 8 mastery 
levels as they reach mastery criteria for each category 



(typically mastering the easier integer categories first). 
Figure 3 also shows a distinctive U-shaped curve for 
average accuracy across time phases. Average accuracy 
starts at around 68%, as the PLM begins with the simplest 
integer problems first, and then drops to a low near 50% 
during the middle of training (phases 5-7), before climbing 
back up. The steep drop coincides with the appearance of 
more difficult problems and persists as the easiest problem 
categories are being retired, which results in students’ 
practice being adaptively focused on more difficult 
categories. In the last third of training, accuracy again 
increases as performance improves on harder categories. 
 

Figure 3: Average Mastery Level and Accuracy during 
Training over Relative Time Phase  

 

Figure 4: Average Error Rate on Relevant Problems over 
Relative Time Phase 

 

Figure 4 compares the proportion of errors made by each 
student at each phase of learning, averaged across all 
students. Regrouping errors showed the highest rate 
(relative to eligible problems) in all phases, and they 
decreased steadily in phases 5-10. Notably, the decline in 
Regrouping errors coincided with an increase in average 
accuracy and mastery levels across phases 7-10. Both Hash 
Mark Fraction and Hash Mark Integer errors, which were 
relatively less common, also decreased across phases. Given 
Information errors decreased over time, again, with a 
sharper drop in the later phases. Unproductive Response 
errors showed a different pattern, initially increasing and 
then leveling off during the phases in which conceptual 
errors were declining and correct responses were increasing 
most rapidly. Problem Encoding errors were relatively 
uncommon and remained steady across phases.  

Repeated Measure ANOVAs were run on each type of 
error rate to examine mean error rates (averaged across 
students) across relative time phase. There was a significant 
effect for nearly all captured errors (using a Huynh-Feldt 
adjustment for sphericity). Regrouping, Hash Mark Integer, 
Hash Mark Fraction, and Given Information errors all 
decreased significantly across phases (p < .0001 in all 
cases). Unproductive Response errors increased 
significantly across phases (p < .0001). Problem Encoding 
errors did not vary significantly (p = .07). Paired t-tests 
comparing mean error rate at initial and final phases also 
demonstrated significant results (p < .0001) for all error 
rates except Problem Encoding errors (p = .62).  
 

 Discussion and Future Directions 
The error analyses presented indicate that the Linear 
Measurement PLM was successful in mitigating several of 
the specific conceptual errors it was designed to address. 
Regrouping errors and errors that involved counting hash 
marks rather than intervals for both integer and fraction 
rulers declined significantly as students used the software. 
Most students mastered most or all of the subcategories in 
the learning set, including fairly difficult fraction problems 
that required them to be able to flexibly partition and 
repartition integers and fractions with varying denominators 
and to add and subtract fractions and mixed numbers. Given 
that the problems were intentionally varied and required 
open-ended responses, it is unlikely that students 
accomplished this formulaically, without gaining some 
genuine insight into the structure of linear units of 
measurement and fractions. Indeed, coming to recognize 
essential structures and relations across novel instances is a 
hallmark of perceptual learning (Kellman & Massey, 2013). 

The targeted conceptual errors showed a distinctive 
pattern of decline over time, while other types of errors, 
such as time-outs and unproductive responses, increased 
during the first half of training. While it may seem 
paradoxical that some types of errors would increase, this is 
at least in part a result of the adaptive nature of the software. 
As students retire certain categories, up until the time all 
categories are retired, the problems they are seeing come 



from not-yet mastered categories and generally become 
more difficult as students proceed through the module. Thus 
the pattern of progressive decreases in the targeted 
conceptual errors indicates that the software was selectively 
helping learners resolve these conceptual issues. 

The methods used in these analyses have significant 
potential to be extended in ways that would further 
illuminate students’ learning with this kind of adaptive 
software. Future extensions of this approach will examine 
the as yet uncaptured errors in the dataset to see if there are 
more error types that could be coded with well-defined 
algorithms. Future analyses can also go beyond patterns 
averaged across students to examine patterns for individual 
learners or particular subgroups of learners. As the RCT that 
generated the present dataset proceeds, student-level co-
variate data, including demographic data and scores on 
standardized state tests and on an aligned mathematics test, 
will become available, which will enable these more 
detailed explorations. Additional analyses can also 
investigate at a finer grain how error types interact with 
specific subtypes or features of problems. While the present 
analyses have focused particularly on conceptual errors, 
since that is what the software was primarily designed to 
address, error data might be analyzed from other points of 
view. For example, Unproductive Response errors could 
index disengagement or other motivational or attentional 
issues for some students. Finally, findings from error 
analyses of large data archives can be a powerful input to 
the design process to create new generations of software that 
are more adaptive in classifying errors in real-time and 
responding to them in more differentiated ways. 

Acknowledgments 
We gratefully acknowledge expert assistance from Tim 
Burke and support from IES, US Department of Education 
through Grants R305A120288 and R305H06070 to UCLA 
and the University of Pennsylvania. The opinions expressed 
are those of the authors and do not represent the views of 
the US Department of Education. 

References  
Ball, D. L. (1993). Halves, pieces, and twoths:  Constructing 

and using representational contexts in teaching fractions. 
In T. P. Carpenter, E. Fennema, & T. A. Ronberg (Eds.). 
Rational numbers:  An integration of research. Hillsdale, 
NJ:  Lawrence Erlbaum. 

Bell, A., Greer, B., Grimison, L., & Mangan, C. (1989). 
Children’s performance on multiplicative word problems:  
Elements of a descriptive theory. Journal for Research in 
Mathematics Education, 20(5), 434-449. 

Bowden, J., Massey, C. M., Kregor, J. D. (April, 2015). 
What predicts successful use and completion of an 
adaptive mathematics software intervention? Paper 
presented at the 2015 Annual Meeting of the American 
Educational Research Association, Chicago, Illinois. 

Bragg, P. & Outhred, L. (2004). A measure of rulers – the 
importance of units in a measure. Proceedings of the 28th 

Conference of the International Group for the Psychology 
of Mathematics Education, 2, 159-166. 

Bright, G. W., Behr, M. J., Post, T. R. & Wachsmuth, I. 
(1988). Identifying fractions on number lines. Journal for 
Research in Mathematics Education, 19(3), 215-232. 

Brown, J. S. & Burton, R. R (1978). Diagnostic models for 
procedural bugs in basic mathematical skills. Cognitive 
Science, 2, 155-192. 

Fuson, K. (1990). Issues in place-value and multidigit 
addition and subtraction teaching and learning. Journal 
for Research in Mathematics Education, 21(4), 273-280. 

Gibson, E. J. (1969). Principles of perceptual learning and 
development. New York:  Prentice-Hall. 

Kellman, P. J. & Massey, C. M. (2013). Perceptual learning, 
cognition, and expertise. The Psychology of Learning and 
Motivation, Vol. 58, 117-165. New York:  Elsevier. 

Kellman, P.J., Massey, C.M & Son, J. (2010). Perceptual 
learning modules in mathematics: Enhancing students' 
pattern recognition, structure extraction, and fluency. 
Topics in Cognitive Science, Special issue on Perceptual 
Learning, 2(2), 285-305. 

Lehrer, R., Jaslow, L. & Curtis, C. (2003).  Developing an 
understanding of measurement in the elementary grades. 
In D. H. Clements & G. Bright (Eds.), Learning and 
teaching measurement, 2003 yearbook. Washington, DC:  
National Council of Teachers of Mathematics. 

Mitchell, A. & Horne, M. (2008).  Fraction number line 
tasks and the additivity concept of length measurement. In 
M. Goos, R. Brown & K. Markar (Eds.). Proceedings of 
the 31st Annual Conference of the Mathematics Education 
Research Group of Australasia (pp. 353-360). MERGA. 

National Mathematics Advisory Panel (2008). Foundations 
for Success: The Final Report of the National 
Mathematics Advisory Panel. Washington, DC:  U.S. 
Department of Education. 

National Research Council, (2001). Adding it up: Helping 
children learn mathematics. J. Kilpatrick, J. Swafford, & 
B. Findell (Eds.). Mathematics Learning Study 
Committee, Center for Education, Division of Behavioral 
and Social Sciences and Education. Washington, DC:  
National Academy Press. 

Scott, L. (1962). Children’s concept of scale and the 
subtraction of fractions. The Arithmetic Teacher, 9(3), 
115-118. 

Scull, J. (April, 2015). Perceptual learning technology in 
sixth-grade mathematics education. Poster presented at 
the 2015 Annual Meeting of the American Educational 
Research Association, Chicago, Illinois. 

Siemens, G. & Baker, R.S.J.d. (2010). Learning analytics 
and educational data mining:  Toward communication and 
collaboration. Proceedings of the 2nd international 
conference on learning analytics and knowledge (pp. 252-
254). ACM. 

Vosniadou, S. & Verschaffel, L. (2004). Extending the 
conceptual change approach to mathematics learning and 
teaching. Learning and Instruction, 14(5), 445-451. 


