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Although much recent work in perceptual learning (PL) has focused on basic sensory discriminations,
recent analyses suggest that PL in a variety of tasks depends on processes that discover and select infor-
mation relevant to classifications being learned (Kellman & Garrigan, 2009; Petrov, Dosher, & Lu, 2005). In
complex, real-world tasks, discovery involves finding structural invariants amidst task-irrelevant varia-
tion (Gibson, 1969), allowing learners to correctly classify new stimuli. The applicability of PL methods
to such tasks offers important opportunities to improve learning. It also raises questions about how learn-
ing might be optimized in complex tasks and whether variables that influence other forms of learning
also apply to PL. We investigated whether an adaptive, response-time-based, category sequencing algo-
rithm implementing laws of spacing derived from memory research would also enhance perceptual cat-
egory learning and transfer to novel cases. Participants learned to classify images of 12 different butterfly
genera under conditions of: (1) random presentation, (2) adaptive category sequencing, and (3) adaptive
category sequencing with ‘mini-blocks’ (grouping 3 successive category exemplars). We found significant
effects on efficiency of learning for adaptive category sequencing, reliably better than for random presen-
tation and mini-blocking (Experiment 1). Effects persisted across a 1-week delay and were enhanced for
novel items. Experiment 2 showed even greater effects of adaptive learning for perceptual categories con-
taining lower variability. These results suggest that adaptive category sequencing increases the efficiency
of PL and enhances generalization of PL to novel stimuli, key components of high-level PL and fundamen-
tal requirements of learning in many domains.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction cus of many contemporary researchers on basic discriminations
Attaining expertise in many domains depends on changes in the
way information is extracted – perceptual learning (Gibson, 1969;
Kellman & Garrigan, 2009). In the last two decades, work in cogni-
tive and neural sciences has witnessed a resurgence of interest in
perceptual learning (PL). Most of this recent work has focused on
simple sensory dimensions using a few specific stimulus values.
In contrast, the focus of earlier PL research (Gibson, 1969) and
the application of PL in virtually all real-world tasks involves dis-
covery of invariance amidst variation.

These emphases relate to different scientific purposes. In the
work of Eleanor Gibson, and in some recent work (e.g., Kellman
& Massey, 2013; Kellman, Massey, & Son, 2010), the focus is on
understanding how changes in information extraction advance
performance in complex domains and real-world settings. The fo-
using a small set of simple stimuli relates to attempts to under-
stand the neural bases of PL, especially receptive field changes in
early cortical areas (e.g., Fahle & Poggio, 2002).

Much recent work suggests that learning effects in both so-
called low-level and high-level PL tasks often involve common
principles and mechanisms, specifically discovery of what informa-
tion makes the difference in classifications being learned (Ahissar
& Hochstein, 1997; Kellman & Garrigan, 2009; Petrov, Dosher, &
Lu, 2005). In work on basic sensory discriminations, for example,
data have tended to favor models emphasizing selective re-weight-
ing of analyzers rather than receptive field changes (Petrov,
Dosher, & Lu, 2005), and many PL results appear to be incompatible
with explanation primarily in terms of changes in early receptive
fields (Ahissar, 1999; Crist, Li, & Gilbert, 2001; Garrigan & Kellman,
2008; Ghose, Yang, & Maunsell, 2002; Liu, 1999; Wang et al., 2012;
Xiao et al., 2008; for discussion, see Kellman & Garrigan, 2009).

The emphasis on discovery processes that lead to weighting of
the most relevant analyzers strongly mirrors Gibson’s (1969)
emphasis on selection of relevant structure; in fact, Gibson often
used ‘‘differentiation learning’’ as a synonym for PL. Contemporary
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models based on selection of analyzers place the focus within the
nervous system, whereas selection of information or discovery of
invariants in the world places the focus outside the organism and
onto the environment, but clearly these are two sides of the same
coin (assuming that analyzers pick up relevant information from
the environment). Findings that PL appears to occur only for con-
stancy-based information, rather than any arbitrary sensory invari-
ant, also implicate learning processes focused on extracting
functionally relevant environmental properties (Garrigan &
Kellman, 2008).

Understanding that PL processes involve discovery and selec-
tion of information not only helps to unify various PL tasks and re-
sults but has direct practical implications. Recent work suggests
that domain-specific changes in information extraction attained
through PL comprise a much larger component of expertise than
is often understood (Kellman & Garrigan, 2009). This is true even
in high-level, symbolic domains, such as mathematics, chess, and
reading (Chase & Simon, 1973; De Groot, 1965; Goldstone, Landy,
& Son, 2008; Kellman & Massey, 2013; Kellman, Massey, & Son,
2010; Thai, Mettler, & Kellman, 2011), where PL functions syner-
gistically with other aspects of cognition. Learning technology
based on PL, in the form of perceptual learning modules (PLMs),
has been shown to accelerate crucial and otherwise elusive aspects
of learning, including pattern recognition, transfer, and fluency, in
domains as diverse as aviation training (Kellman & Kaiser, 1994),
mathematics learning (Kellman, Massey, & Son, 2010; Massey
et al., 2011), and medical learning (Krasne et al., 2013; Guerlain
et al., 2004; Kellman, 2013).

The realization of the importance of PL in diverse learning tasks
and the emergence of PL interventions raise the question of
whether PL shares principles that have been found to improve or
optimize other kinds of learning. When we learn new perceptual
classifications, what principles govern successful learning? Are
there ways of organizing the order of presentation of material such
that learning is enhanced? Such questions form the basis for the
following studies, which investigate effective training strategies
for enhancing perceptual learning – especially when learning con-
cerns sets of categories or natural kinds.

1.1. Spacing and memory

One of the most robust and enduring findings in research on
memory for factual items concerns the benefits of spaced practice
relative to those of non-spaced practice. ‘‘Spaced’’ practice means
repeated exposure of an item following delays or presentation of
intervening items. In general, longer delays are more beneficial
than shorter delays, up to some maximum after which the benefit
to learning decreases (Benjamin & Tullis, 2010; Cepeda et al., 2008;
Glenberg, 1976). Maximum benefit may occur when re-presenta-
tion of an item is just prior to – and no later than – the moment
that its decaying memory trace becomes irretrievable; that is,
items are best re-presented just before they are forgotten. Experi-
mental evidence suggests that the value of a presentation of an
item increases with the difficulty of successful retrieval (Benjamin,
Bjork, & Schwartz, 1998; Pyc & Rawson, 2009). Pyc and Rawson
(2009) labeled this idea the ‘‘retrieval effort hypothesis’’: More dif-
ficult, but successful, retrievals are more beneficial.

Substantial data suggest that producing difficult but successful
retrievals can be accomplished by expanding spacing during the
course of learning. Expanding retrieval practice has been studied
for nearly half a century (Cull, Shaughnessy, & Zechmeister,
1996; Landauer & Bjork, 1978; Pimsleur, 1967). Explanations of
the value of expanded retrieval intervals usually invoke or assume
an underlying notion of learning strength that increases with re-
peated presentations of an item. Learning strength can be thought
of as a hypothetical construct related to probability of successful
recall on a future test. When a new item is presented, learning
strength may be low, but it typically increases with additional
learning trials.

Although a preset schedule of expanding spacing intervals
across trials will tend to correlate with increasing learning
strength, the match may be far from perfect. Even if learning
strength increases monotonically, preset intervals may expand
too much or not enough. Moreover, learning of particular items
by particular individuals may produce different courses of improv-
ing learning strength, and learning strength may actually be a
non-monotonic function of trials, depending on item difficulty
and relations among items being learned. Ideal spacing intervals,
from the standpoint of the retrieval difficulty hypothesis, might in-
volve, not predetermined intervals, but flexible spacing that
matches current learning strength. Arranging learning to approxi-
mate such an ideal would benefit from an ongoing indicator of
learning strength, one which might vary for different learners,
items, and their interactions.
1.2. The ARTS system

Evidence indicates that response time (RT) is a useful indicator
of retrieval difficulty, and thus of an item’s current learning
strength (Karpicke & Bauernschmidt, 2011; Pyc & Rawson, 2009).
This relationship offers a useful way of updating spacing to track
underlying learning strength: Adaptive methods can use an indi-
vidual’s accuracy and RT performance data for learning items to
dynamically schedule spacing intervals. Mettler, Massey, and
Kellman (2011) showed that a system that determines spacing
dynamically based on each learner’s accuracy and speed in interac-
tive learning trials (the Adaptive Response-Time-based Sequencing
or ARTS system) produced highly efficient learning and compared
favorably with a classic adaptive learning system (Atkinson, 1972).

ARTS uses a priority score system, in which the priority for an
item to reappear on each learning trial is computed as a function
of accuracy, response time, and trials since the last presentation.
The system also implements mastery criteria based on both accu-
racy and speed. As learning strength increases, as reflected in per-
formance, delay intervals automatically expand in this system.
Because all items compete for presentation on any trial, through
their priority scores, the system concurrently implements adaptive
spacing for all learning items. (See the Method section for further
detail on the ARTS system.)

ARTS was designed to test principles of learning and memoriza-
tion of factual items (e.g., Mettler, Massey, & Kellman, 2011), but it
can be applied to perceptual category learning as well, in cases
where there are multiple categories to be learned. This situation
occurs in many real world tasks, such as a dermatologist learning
to identify different kinds of skin lesions, an air traffic controller
learning to recognize different types of aircraft, or a chemist learn-
ing to recognize different types of molecular structures. In adaptive
category sequencing, the ARTS system tracks learners’ accuracies
and response times in order to assess the learning strength of cat-
egories. Each category is given a dynamically updated priority
score, reflecting the relative importance of an exemplar of that cat-
egory appearing on the next learning trial.
1.3. Relationship between perceptual learning and factual learning

Although it is clear how adaptive spacing might be applied to
PL, it is not clear whether the same principles of spacing and
expanding the retrieval interval that improve item memory would
enhance PL. There have not been many studies of PL in real-world
learning domains, and there has been even less work exploring the
conditions that optimize such learning. These two kinds of learning
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appear to involve different mechanisms, and they might require
different arrangements to optimize learning.

Whereas item learning involves storing and retaining specific
information, PL has been argued to contain two kinds of changes:
discovery and fluency effects (Kellman, 2002). Discovery involves
altering encoding processes to progressively locate the most rele-
vant information for some task. Specific PL discovery effects, ob-
served in both simple and complex PL tasks, include increasing
selectivity and precision of information extraction as learning pro-
gresses; relevant features are encoded and irrelevant ones ignored
(Gibson, 1969; Petrov, Dosher, & Lu, 2005). Other discovery effects
involve the learner coming to notice higher-order relations that
were initially not encoded at all, and/or coming to encode informa-
tion in larger ‘‘chunks’’ (Chase & Simon, 1973; Gibson, 1969; Gold-
stone, 2000; Kellman & Garrigan, 2009). Fluency effects involve
improved speed, greater parallel processing, and lower attentional
load in picking up task-relevant information as learning progresses
(Kellman & Garrigan, 2009; Shiffrin & Schneider, 1977).

All of these processes go well beyond storing and maintaining a
specific memory trace. In learning a number of related perceptual
classifications, the commonalities or invariances that determine
category membership must be discovered in PL, and conversely,
in learning to differentiate different categories, distinguishing fea-
tures must be discovered.

Despite differences in underlying mechanism, there are reasons
to suspect that spacing may be beneficial in perceptual category
learning as well as in factual learning. One reason is that interleav-
ing exemplars of different categories may facilitate discovery of
distinguishing features (Gibson, 1969), just as paired comparisons
might (Kang & Pashler, 2012; Mettler & Kellman, 2009). On the
other hand, discovering perceptual attributes shared by exemplars
of a single category might better be served by encountering several
exemplars close together in time; in other words, massed rather
than spaced presentation. Perhaps a more compelling reason for
an analogy between spacing benefits in fact learning and PL is
the notion that the best time to receive further practice is when
learning strength has declined enough to make accurate perfor-
mance relatively difficult. Although different specific mechanisms
of learning may be at work in different domains, optimizing prac-
tice based on intervals that progressively increase as learning
strength grows may be a commonality across types of learning.

There has been some earlier work on these questions. Kornell
and Bjork (2008), compared interleaving and massing of learning
items in perceptual category learning of artists’ painting styles. In
the interleaved condition, one painting from each artist was pre-
sented in a sequence before any second painting from an artist
was presented (each block of presentations contained 1 painting
from each artist). In the massed condition, the 6 examples of each
artist’s paintings were presented consecutively, followed by the
entire set of another artist’s paintings, and so on, until all paintings
from all artists were presented. They measured participants’ accu-
racy in classifying previously unseen paintings from each artist and
found that interleaving led to greater success.

Kornell and Bjork’s results differ from those of some studies in
memory and human performance that show advantages for
blocked vs. randomized trials of practice (see Schmidt & Bjork,
1992, for a review). Similarly, some work in perceptual learning
and unsupervised category learning shows benefits for massing,
severe detriments for interleaving of stimuli (Kuai et al., 2005; Zei-
thamova & Maddox, 2009), or no advantage for either type of sche-
dule (Carvalho & Goldstone, 2011). We wondered if schedules that
combine spacing with modest amounts of massing could result in
even greater learning than spacing or massing alone. This hypoth-
esis was tested using a separate condition that combined blocking
in the initial stages of learning with adaptive spacing in later stages
(see below).
1.4. Purposes of current work: adaptive sequencing in PL

Can PL of natural categories be enhanced by adaptive spacing
techniques that have been shown to improve learning for factual
information?

To study this question, we used a learning task involving tax-
onomic classifications of images of butterfly (Lepidoptera) spe-
cies. Natural stimuli such as these afford the type of feature
discovery present in real-world perceptual learning, where, in
contrast to most artificial stimuli, relevant stimulus features are
richly perceptual, hierarchically organized, and distributed sto-
chastically and non-independently across categories. We em-
ployed a web-based perceptual learning module (PLM) that
included the ARTS system described above. The PLM presented
butterfly images in pairs, one from a target category (target but-
terfly genus) and one from an alternate category. Participants
were asked to choose the image that correctly matched the pre-
sented target category name. Feedback was given on each trial,
and participants continued discriminating butterflies until they
had learned the correct label-to-category mappings. Previous
work suggests that paired comparisons across many trials are
effective in eliciting PL (Mettler & Kellman, 2009; Wahlheim,
Dunlosky, & Jacoby, 2011).

We continued the PLM until each learner met mastery criteria
based on accuracy and speed of classification. We used mastery
criteria because of their relevance to applications in real-world
learning contexts, and from the standpoint of experimental con-
trol, they allowed us to assess learning after each learner had
reached a similar endpoint. Mastery is also an important and nat-
ural feature of adaptive learning, in that use of objective mastery
criteria can allow removal (‘‘retirement’’) of learned categories,
allowing each learner to spend further learning effort where it is
needed most. The benefits of using mastery criteria, however, come
with a difficulty. Different learners require different numbers of
trials to reach criterion. This leaves the experimenter with two
dependent measures of learning – posttest performance and trials
to criterion. To allow comparisons between conditions that in-
cluded both of these measures, we combined them into a measure
of learning rate or learning efficiency, defined as accuracy gains di-
vided by learning trials invested.

Based on potential benefits of both spacing and massing in PL,
and in view of earlier work indicating that complete massing is
sub-optimal, we also included a condition with some initial mass-
ing of category exemplars (‘‘mini-blocks’’).

To ensure that learning involved discovery of perceptual struc-
ture, rather than memorization of instances, we assessed learning
using an equal number of unfamiliar instances, never shown dur-
ing the pretest or learning phases, and familiar instances, which
could appear one or more times during learning.

Finally, we tested learning both in an immediate posttest and
after a delay of one week. In studying spacing effects in perceptual
learning, it is important to consider the possibility of transient per-
formance effects that appear in immediate tests but might not sur-
vive in a delayed test, as has proven important in studies of other
kinds of learning. Conditions that optimize performance on imme-
diate tests may not be the ones that are best for durable learning
(e.g., Schmidt & Bjork, 1992).

We tested three conditions: (1) a control condition that orders
items in an unmodified random sequence, (2) an adaptive sequenc-
ing condition (ARTS) that changes the delay between presentations
of a category as a function of learning strength, and (3) a condition
that initially blocks 3 exemplars from a category sequentially
(called ‘‘mini-blocks’’), presented for two rounds before proceeding
to standard adaptive sequencing. Because the adaptive sequencing
conditions also included retirement, we anticipated that learning
would be quicker there, and that performance at an immediate



Fig. 2. Example distribution of one stimulus category across experiment phases. In
pretest: Exemplar H1 is tested. In the learning phase, all category exemplars except
H9 are presented. In each posttest, one previously seen exemplar, H1, and one novel
exemplar not presented during the learning phase, H9, are tested.

Fig. 3. Trial presentation formats in the assessment and learning phases of the
experiments. (A) Pretest and posttest: Each trial was a 4-alternative forced choice,
where one of the 4 exemplars belonged to the target genus. (B) Learning phase:
Each trial was a 2-alternative forced choice, where one of the two exemplars
belonged to the target genus.
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and 1 week delayed test would be most efficient for participants in
those conditions (greatest learning per trial invested in training).

In a second experiment, we manipulated the degree of variabil-
ity between categories to observe how adaptive sequencing inter-
acts with category structure. Decreasing the variability, and thus
making items within a category more similar to one another, is a
way of approximating the effect that dynamic sequencing would
have on a variety of types of categories. It is also more similar to
a situation in which learning concerns individual items as opposed
to categories of varying exemplars. Our prediction was that adap-
tive sequencing would operate as well when categories were of
lower variability as when high, and we tested the efficacy of the
adaptive scheduling algorithm in both cases without any modifica-
tion to the parameters of our model.

2. Experiment 1

2.1. Method

2.1.1. Participants
54 undergraduate psychology students from the University of

California, Los Angeles participated in an hour-long experiment
for course credit. Participants returned one week after the first
session for a delayed posttest. Four of 58 were disqualified: one be-
cause of a failure to complete a delayed posttest and three others,
one from each condition, who failed to reach a learning criterion in
the training session, as described below.

2.1.2. Displays and materials
The materials for this study consisted of 108 images of Lepidop-

tera (butterfly) specimens arranged into 12 categories by genus
(see Fig. 1 for examples). Each category contained nine exemplars
where one exemplar from each category was withheld during
learning in order to be used as a test of transfer of learning to un-
seen items in the two posttest phases (see Fig. 2). A multidimen-
sional scaling analysis was conducted to ensure categories
occupied positions of roughly equivalent similarity distance from
each other (implying equivalent learning difficulty), though there
was some variability in difficulty across categories. The images
used for both the immediate and delayed posttests were fixed for
each subject. Images were presented in jpeg form in 16-bit color,
where each image was 450 � 300 pixels. All pretest, training, and
posttest sessions occurred within a web-based perceptual learning
module (PLM). The PLM presented a text label of the category
name in an upper middle position (as in the ‘sample’ position, of
a ‘match-to-sample’ presentation). In pretest and posttest trials,
four images were presented in the center of the screen in two rows
and two columns (see Fig. 3A). Only one image contained an exem-
plar from the target category – the distractors each contained an
Fig. 1. Examples of images used in the experiments. Three examples from each of two
Examples of genus Cethosia.
exemplar from one of three alternate categories. During training
trials, two images were shown side by side in the middle of the
screen just below the category label (a 2AFC presentation, see
Fig. 3B).
2.1.3. Design
The experiment utilized a pretest/posttest design. A pretest

measured baseline levels of perceptual category knowledge. Partic-
ipants completed 12 trials where each category was presented as a
target once, in random order. Each trial consisted of a match-to-la-
bel test; a four alternative forced choice between four images:
exemplars from three incorrect categories and one exemplar from
the correct target category. Pretest exemplars were randomly cho-
sen at the start of the experiment and the same exemplars were
displayed to all participants.

The training session consisted of a series of match-to-label tri-
als, where each trial tested one target category. Trials consisted
of a two alternative forced choice (2AFC) decision between two
images: a randomly selected exemplar from the target category
and a randomly selected exemplar from an alternate category.
There were 3 between-subjects scheduling conditions that
butterfly genera (trained categories) are shown. (A) Examples of genus Aglais. (B)
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determined the order of presented categories: (1) purely random
stimulus presentation, (2) adaptive category sequencing with
retirement, and (3) mini-blocks with adaptive category sequencing
and retirement. The participant completed as many trials as neces-
sary to reach a learning criterion.

An immediate posttest measured the degree of perceptual
learning after a learning session. The immediate posttest was sim-
ilar to the pretest but contained an additional trial for each cate-
gory, for a total of 24 test trials. For each category, one trial was
of a familiar exemplar (an image presented during training) and
one trial was of a novel exemplar (not presented during training).
The novel exemplar was used to measure transfer or generalization
of category knowledge to unseen stimuli. The same posttest items
were shown to all participants. A delayed posttest, given one week
later, was identical to the immediate posttest and measured the
amount of retention after a delay.

2.1.4. Adaptive sequencing algorithm
The sequencing algorithm calculated a priority score for each

category, where, on any subsequent trial, priority scores were com-
pared across categories to determine the likelihood of a category’s
presentation on that trial. Details of the priority score calculation
are given in Eq. (1) (and below) and parameters are given in the
appendix (Table 1).

Pi ¼ aðNi � DÞ½bð1� aiÞLogðRTi=rÞ þ aiW � ð1Þ

Priority P for category i was determined as a function of the number
of trials since that category was last presented Ni, an enforced delay
D (a constant, which was set to 2 in the experiments here), and the
accuracy (ai) and response time (RTi) on the previous presentation
of that category. Accuracy (ai) was a binary variable determined
by the correctness of the user’s response: 0 if the question was an-
swered correctly, 1 otherwise. This binary accuracy variable acted
as a switch activating either the error part of the equation (for an
incorrect answer) or the RT part of the equation (for a correct an-
swer). The rationale was that RTs for incorrect answers were not
considered informative for spacing. An incorrectly answered cate-
gory was given a large priority increment (W) that typically ensured
re-presentation after a delay of two trials. Correctly answered items
were assigned a priority score that was a log function of RT (where
the logarithm was used to weight small differences among RTs
more heavily for shorter RTs than for longer ones). Parameters a,
b, r, were weighting constants: a controlled the rapidity with which
priority accumulated as a function of elapsed trials; b and r modu-
lated the relation between RTs and spacing delays. Although prior-
ity score equations using response time and accuracy can take many
forms, the parameters here were fixed and identical for both exper-
iments, and were also the same as used in previously published re-
search on item learning (Mettler, Massey, & Kellman, 2011). Taken
together, the elements of the priority score equation given here
implement a number of principles of learning that have been de-
rived in memory research, including rapid recurrence of missed
items; but enforcing at least some delay in re-presenting an item,
to make sure the answer does not still reside in working memory;
and stretching the retention or recurrence interval as learning
strength, indicated by accuracy and RT, increases. Of course, these
ideas are here extended to perceptual learning, so that categories,
not items, are spaced, and presentation of a category typically in-
volves a novel instance. Whether these principles, previously estab-
lished in item learning contexts, make PL more efficient when
embodied in the ARTS system is, of course, the primary experimen-
tal question.

Re-presented items were randomly chosen exemplars from the
target category, where the odds of any exemplar being selected
were 1/8. The adaptive sequencing conditions also included ‘cate-
gory retirement,’ based on criteria that specified when a particular
category was well learned enough to merit being dropped from the
training set. Pilot testing determined the criterion levels that re-
sulted in successful discrimination performance on a posttest and
transfer tests of learning. The criterion level was 5 out of 6 correct
with RT less than 3 s.

Adaptive sequencing with ‘mini-blocks’ (Adaptive/Mini-blocks
condition) was identical to the Adaptive condition, but at the start
of training participants received ‘mini-blocks’ of 3 exemplars from
the same category consecutively presented across sequential trials.
Participants received two ‘mini-blocks’ per category before adap-
tively sequencing individual presentations of categories without
blocking. We hypothesized that in this condition, a moderate de-
gree of grouping of exemplars would aid in comparison processes
known to enhance perceptual learning and category learning.

In the Random presentation condition, training sessions con-
sisted of random selection of categories on each trial, with no con-
straints on the total number of times a category could be presented
or the total number of presented stimuli from each category. This
condition implemented a method for ending training after the
accuracy for every category had reached the same retirement crite-
ria as in the dynamic sequencing condition (5 out of 6 correct). This
helped to ensure that the number of total presentations of individ-
ual categories would accurately reflect typical randomized learn-
ing schedules and remain distinct from the category retirement
feature that was present in adaptively sequenced schedules.

2.1.5. Procedure
In the pretest, participants were presented with a category label

at the top of the screen and four images in the center of the screen.
Participants were instructed to indicate the image that belonged to
the presented category label and to make their best guess if they
did not know the answer. No feedback was given during this phase
and the test took no more than 3–5 min.

The learning phase consisted of one session, no longer than
45 min, where participants were instructed to choose the image
that best matched a presented genus label. Participants were
shown one genus name at the top of the screen and images from
two different butterfly genera side by side. Participants were asked
to choose either the left or right image and respond using the key-
board. Responses were considered correct if the chosen image be-
longed to the correct genus. Participants were given 30 s to
respond and were always provided with feedback. If a participant
failed to respond within 30 s, the trial timed out and feedback
was given, where a timeout was recorded as an incorrect response.
Feedback consisted of highlighting the correct image and display-
ing ‘correct’ or ‘incorrect’ depending upon the accuracy of the par-
ticipant’s response. In addition, the name of the target genus
moved to a position underneath the correct image. Feedback dis-
played for a minimum of 3.5 s, although participants had up to
15 s to view the feedback before the screen was cleared. Partici-
pants could use the spacebar to progress to the next trial any time
after the initial 3.5 s. Summary feedback was provided every 10 tri-
als. Summary feedback consisted of a graph of average accuracies
and response times for each previous 10 trial block.

Immediately after training, participants completed a posttest.
After the posttest participants were asked to not study or review
the information in the study. One week after the posttest, a delayed
posttest was administered.

2.1.6. Dependent measures and analyses
Use of mastery criteria has many advantages both in real learn-

ing settings and in studies of learning, but it poses the problem of
producing two kinds of data about the effectiveness of learning
conditions. Learners’ posttest performance can indicate how much
has been learned, but different conditions of learning may require
differing amounts of time or learning trials to produce a certain



Fig. 4. Learning results for Experiment 1. (A) Mean efficiency scores by learning
condition and posttest phase. Efficiency scores were the number of posttest items
answered correctly divided by the number of trials invested in learning. Familiar
stimuli were posttest items that had been shown during training, whereas novel
stimuli were items that had not been presented previously. (B) Mean accuracy
results by learning condition and posttest phase. Accuracy is given as the
percentage of 24 posttest questions answered correctly. These data indicate raw
accuracy not corrected for number of learning trials; the number of learning trials in
each condition is shown in parentheses. (C) Mean accuracy by learning condition
based on equal numbers of learning trials. Parentheses indicate trial number at
which accuracy was measured, for the two most recent presentations of each
category. In all graphs, error bars indicate ±one standard error of the mean.
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amount of learning. Both indicators of learning effectiveness are
important, and in real-world contexts, learning time, as well as
amount learned, both matter. To capture the combined effects of
time invested and posttest performance, we used a measure of
learning efficiency, which consists of posttest performance (number
of items correct) divided by the number of trials an individual par-
ticipant completed during training. Specifically, this measure gives
a learning rate that measures gains in accuracy per unit time (tri-
als) invested (Eq. (2)):

E ¼ Ap=T; ð2Þ

where Ap = accuracy on posttest (number of items correct) and
T = number of learning trials invested. Use of efficiency as our pri-
mary measure of learning not only combines learning results into
a single, simple measure, but it is also useful here because learning
to criterion typically results in participants having similar posttest
accuracies. Comparing raw accuracy scores may be uninformative
without regard to the duration of a participant’s training (see
Underwood, 1964 for a discussion of the relative merits of ‘learning
to criterion’ in experimental investigations of learning).

Whereas the efficiency measure captures learning gains per
learning trials invested, we were also able to extract a measure of
learning after equal numbers of learning trials. To do this, we took
the average number of learning trials required in the basic adaptive
condition to reach the learning criteria, and we looked at accuracy
and response times for conditions on the last two presentations of
each stimulus category at that point in learning. This measure al-
lows some indication of learning across conditions at a point where
each condition had the same number of learning trials.1

2.1.7. Predictions
In the Adaptive condition, it was expected that adaptive

sequencing – where quick, correct answers to categories would de-
lay their reappearance – would lead to more rapid learning and en-
hance discrimination even for difficult categories. It was thought
that retirement of well learned categories would make learning
more efficient to an even greater degree. We expected that the par-
tial blocking in the Adaptive/Mini-blocks condition would perform
better than the Random condition and that the Adaptive/Mini-
blocks condition might even outperform the basic Adaptive condi-
tion. A similar effect of these conditions on transfer to novel stimuli
was expected.

2.2. Results

Learning performance was measured using a pretest, a posttest
administered immediately after training, and a delayed posttest
administered one week after training. Pretest scores averaged
2.43 items out of 12, indicating that performance was no better
than chance and that participants did not possess prior knowledge
of butterfly genera. A between subjects ANOVA on proportion cor-
rect in the pretest confirmed no significant differences across the
three conditions (F(2,51) = 1.86, p = .17, gp = 0.07). Individual com-
parisons also showed no reliable differences (all ps > .20 for Ran-
dom vs. Adaptive, Random vs. Adaptive/Mini-blocks, Adaptive vs.
Adaptive/Mini-blocks, respectively). In addition, an examination
of participant reaction times (RTs) on the pretest showed no reli-
able difference between conditions, neither in a between subjects
ANOVA nor in individual comparisons (all ps > .19).

Learning efficiency was measured in the immediate and de-
layed posttests by dividing the number of correct posttest items
by learning trials invested. Efficiency scores are shown in Fig. 4A
for the three scheduling conditions, and for both previously seen
1 We thank Michael Herzog for suggesting this analysis.
and novel instances in both immediate and delayed posttests. Effi-
ciencies for the Adaptive condition were numerically higher than
efficiencies in the Random and Adaptive/Mini-blocks condition
for both immediate and delayed tests (Immediate posttest:
M = 0.13, vs. 0.11 and 0.12; Delayed posttest: M = 0.12 vs. 0.09
and 0.10 respectively). We performed a 3 (condition – Adaptive,
Random and Adaptive/Mini-blocks) by 2 (posttest phase – immedi-
ate vs. delayed) by 2 (previously seen vs. novel) mixed factor
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ANOVA with condition as a between-subjects factor and test phase
and stimulus familiarity as within-subjects factors. The ANOVA re-
vealed a marginally reliable main effect of scheduling condition
(F(2,51) = 2.45, p = .096, gp = 0.09). There was a reliable main effect
of test phase (F(1,51) = 51.52, p < .001, gp = 0.50), and no interac-
tion of scheduling condition with test-phase (F(2,51) = 0.16,
p = .86, gp = 0.006).

There was a strong main effect of stimulus familiarity
(F(1,51) = 17, p < .001, gp = 0.25), due to the somewhat surprising
result that performance in the posttests was superior for novel in-
stances. There was also a marginally reliable interaction between
condition and familiarity (F(2,51) = 3, p = .059, gp = 0.105), appar-
ently due to the greater superiority of transfer to novel instances
in the Adaptive condition. There was no interaction between test
phase and familiarity (F(1,51) = 0.30, p = .59, gp = 0.006), nor was
the three way interaction between condition, phase and familiarity
reliable (F(2,51) = 2.45, p = .097, gp = 0.08). Examining the interac-
tion of condition and familiarity, there was a reliable efficiency
advantage for the Adaptive vs. the Random condition for novel
items at both immediate posttest (Adaptive: M = 0.14; Random:
M = 0.11; t(34) = 2.04, p < .05) and delayed test (Adaptive:
M = 0.12; Random: M = 0.09; t(34) = 2.27, p = .03) but the numeri-
cal advantage was marginal or unreliable for familiar items at
immediate (Adaptive: M = 0.13; Random: M = 0.10; t(34) = 1.69,
p = .10) or delayed test (Adaptive: M = 0.11; Random: M = 0.09;
t(34) = 1.89, p = .067). Otherwise, there were no reliable differences
between conditions with either novel or familiar stimuli at any test
(all ps > .05). Because our hypothesis specifically concerned differ-
ences in conditions we conducted planned paired comparisons be-
tween each condition. Averaging across posttests, t-tests showed
that the difference between Random and Adaptive conditions
was significant (t(34) = 2.08, p < .05, Cohen’s d = 0.72). On the
immediate posttest, these two conditions differed marginally
(t(34) = 2.02, p = .051, d = 0.70) and on the delayed posttest, there
was a reliable advantage for the Adaptive condition (t(34) = 2.04,
p < .05, d = 0.71). Other comparisons between scheduling condi-
tions were not significantly different (averaging over posttests,
Random vs. Adaptive/Mini-blocks, p = .20, d = 0.36; Adaptive vs.
Adaptive/Mini-blocks: p = .33, d = 0.43). Paired t-tests showed a
reliable decrease between immediate vs. delayed posttests for all
three conditions (all ps < .005).

Because efficiency scores represent the number of posttest
items answered correctly per trial invested in training, differences
between efficiency scores may appear small, but due to their pro-
portional nature, are quite substantial in practical terms. For exam-
ple, a difference between 0.12 and 0.10 would be a 20% difference
in efficiency. In the present results, the efficiency advantage for the
Adaptive condition compared to the Random condition amounted
to 25% in the immediate posttest and 29% in the delayed posttest.

We also analyzed separately the two dependent measures that
were components of the efficiency measure, number of learning
trials and posttest accuracy for each participant. A between sub-
jects ANOVA found significant differences between the number
of training trials across the three schedules. Participants averaged
154.7, 167.4, and 204.3 trials in the Adaptive, Adaptive/Mini-
blocks, and Random conditions, respectively – a reliable difference
(F(2,51) = 5.50, p = .007, gp = 0.18). Comparing means, the differ-
ences between the Adaptive and Random condition and between
the Adaptive/Mini-blocks and Random condition were significant
(t(34) = 3.02, p = .005, Cohen’s d = 1.01 and t(34) = 2.42, p = .021,
Cohen’s d = 0.81 respectively). Trials did not differ reliably between
the two adaptive conditions (t(34) = .85, p = .04, Cohen’s d = 0.28).

Raw accuracy data (not corrected for number of trials invested)
are shown in Fig. 4B for each condition in both immediate and de-
layed posttests. A 3 � 2 ANOVA across scheduling conditions and
both posttest phases found no effect of scheduling condition
(F(2,51) = 1.94, p = .153, gp = 0.07), an effect of test phase
(F(1,51) = 52.8, p < .001, gp = 0.508), and no interaction of phase
and condition (F(2,51) = 0.053, p = .95, gp = 0.002). Accuracies in
the Random condition numerically exceeded those in the Adaptive
and Adaptive/Mini-blocks conditions in both the immediate and
delayed posttests (Immediate: M: .86 vs. .79 & .80, respectively;
Delayed: M: .75 vs. .68 & .69, respectively). Individual comparisons
showed a marginally significant difference between the Random
and Adaptive conditions on the immediate posttest (t(34) = 1.88,
p = .069, d = 0.63); however, the difference was not reliable at de-
layed posttest (t(34) = 1.63, p = .11, d = 0.55). No reliable differ-
ences were found in immediate posttest accuracy between the
Random and Adaptive/Mini-blocks condition or between the two
Adaptive conditions (ts(34) = 1.57 and 0.30, ps = .13 and .76,
respectively). Similarly, at delayed posttest, there was no reliable
difference between the Random and Adaptive/Mini-blocks condi-
tions, or between the two Adaptive conditions (ts(34) = 1.34 and
0.10, ps = .19 and .92, respectively). All three conditions showed
accuracy decreases between posttest and delayed posttest (all
ps < .05).

We carried out an additional accuracy analysis by comparing
the three learning conditions at a point when all three had the
same number of learning trials. We determined the mean number
of trials to reach criterion in the standard Adaptive condition and
examined the performance of learners in the Random condition
and the Adaptive/Mini-blocks condition after the same number
of trials. The mean number of trials to reach learning criterion in
the Adaptive condition was 155 trials (SD = 48.2). In the Adaptive
condition, we calculated the average accuracy across the last two
presentations of each learning category at the time each learner
reached learning criterion. In the Random and Adaptive/Mini-
blocks conditions we calculated the average accuracy across the
last two presentations of each learning category at the point when
learners had received 155 learning trials. Mean proportions correct
were .98, .96, and .92 for the Adaptive, Adaptive/Mini-blocks, and
Random conditions respectively, after an average of 155 learning
trials (see Fig. 4C). An ANOVA showed a reliable main effect of
learning condition (F(2,51) = 6.1, p = .004). Individual comparisons
indicated that the Adaptive condition had reliably higher accuracy
than the Random condition (p = .004), and the Adaptive/Mini-
blocks condition had marginally higher accuracy than the Random
condition (p < .06). The two Adaptive conditions did not differ reli-
ably (p > .9). (All p values were Bonferroni corrected.) There were
no reliable differences in response times across conditions using
a similar method of measuring RTs at an equivalent point in the
three conditions (155 trials).

A final set of analyses examined mean response times (RTs) in
both posttests. Only response times from correct trials were ana-
lyzed. Response times for Experiment 1 are shown in Fig. 5, right
two panels. A 3 � 2 � 2 ANOVA examined RTs across scheduling
condition, posttest phase and across novel vs. familiar stimuli.
There was no reliable main effect of scheduling condition
(F(2,51) = 1.78, p = .18, gp = 0.07), a significant main effect of phase
(F(1,51) = 6.54, p = .013, gp = 0.11), and no effect of familiarity
(F(1,51) = 2.98, p = .09, gp = 0.06). There were no reliable interac-
tions (all ps > .20). RTs generally increased between immediate
and delayed tests, but individual comparisons did not reveal reli-
able differences across posttests for any condition (all ps > .09).
3. Experiment 2

The purpose of Experiment 2 was to investigate the effect of
within-category variability on adaptive spacing in PL. The spacing
principles we tested here in PL were derived from memory re-
search using fixed items that reappear at varying intervals. In



Fig. 5. Mean response times by quartile of training phase and in the immediate and
delayed posttests by scheduling condition in Experiment 1. Response times include
accurate responses only. Error bars indicate ±one standard error of the mean.

Fig. 6. Learning results for Experiment 2. (A) Mean efficiency scores by learning
condition and posttest phase. Efficiency scores were the number of posttest items
answered correctly divided by the number of trials invested in learning. Familiar
stimuli were posttest items that had been shown during training, whereas novel
stimuli were items that had not been presented previously. (B) Mean accuracy
results by learning condition and posttest phase. Accuracy is given as the
percentage of 24 posttest questions answered correctly. These data indicate raw
accuracy not corrected for number of learning trials; the number of learning trials in
each condition is shown in parentheses. (C) Mean accuracy by learning condition
based on equal numbers of learning trials. Parentheses indicate trial number at
which accuracy was measured, for the two most recent presentations of each
category. In all graphs, error bars indicate ±one standard error of the mean.
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applying these concepts to PL of categories, the category, not a
fixed learning item, is the target of spacing. When it is time for an-
other learning trial, a new instance of the category, not a repeat of
an item, is presented. Intuitively, it seems that the applicability of
spacing principles derived from item learning research might be
greater in PL for categories with lower variability, because new in-
stances of a given category will tend to resemble earlier ones.
Recurrence of a category containing low-variability instances more
closely resembles re-presentation of an identical item.

This idea also applies to the ARTS adaptive learning system used
here. Recall that ARTS uses response times from earlier trials to
estimate learning strength. If a new exemplar of a category bears
little resemblance to an earlier one, the estimate of learning
strength derived for the earlier item may not predict learning
strength of the current item. This problem should be more salient
for high-variability categories and especially for categories that are
disjunctive (i.e., an exemplar may be in the category by virtue of
having either characteristic A or characteristic B). The integrity of
the concept of learning strength seems likely to be greatest when
it applies to an identical item recurring (as in item learning) and
better for categories whose exemplars resemble each other than
for those with highly variable exemplars.

3.1. Method

3.1.1. Procedure
Experiment 2 replicated the procedure of Experiment 1, but

tested whether differences across learning conditions would be af-
fected by the reduced variability of exemplars within each cate-
gory. In Experiment 2 the exemplars in each category were made
less variable in the following way: each category was composed
of instances from one distinct species. In Experiment 1, each genus
(category) was comprised of 3 distinct species, with 3 exemplars
chosen from each of the 3 species. In Experiment 2, only one of
the original 3 species was selected for each genus, and all 9 exem-
plars for the category were selected from that species, effectively
reducing total category variability.

3.1.2. Participants
54 undergraduate psychology students participated in an hour-

long experiment for course credit.

3.2. Results

As in Experiment 1, pretest accuracy across conditions did not
differ from chance (M = .25, SD = 0.11), and an ANOVA showed no
reliable differences between conditions (F(2,51) = 0.39, p = .68,
gp = 0.02). Paired comparisons between conditions were also not
significant (all ps > .40).

Efficiency scores are shown in Fig. 6A for the three scheduling
conditions in both immediate and delayed posttests and across no-
vel and familiar items. Efficiency was generally higher in Experi-
ment 2 than in Experiment 1, as learners required fewer trials to
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achieve criterion performance, especially in the Adaptive condi-
tion. Efficiencies for the Adaptive condition were higher than those
in the Random and Adaptive/Mini-blocks condition for both imme-
diate and delayed posttests (Immediate posttest: Ms = 0.18, vs.
0.10 and 0.11; Delayed posttest: Ms = 0.16, vs. 0.096 and 0.095).
A 3 � 2 � 2 mixed factor ANOVA with condition as a between-sub-
jects factor, and test phase and stimulus familiarity as within-sub-
jects factors, confirmed significant main effects of condition
(F(2,51) = 8.87, p < .001, gp = 0.26), test phase (F(1,51) = 84.5,
p < .001, gp = 0.62), and a marginal condition by test phase interac-
tion (F(2,51) = 2.6, p = .084, gp = 0.092). Paired comparisons re-
vealed that the differences between Adaptive and both of the
other two conditions (vs. Random and Adaptive/Mini-blocks) were
reliable at immediate posttest (t(34) = 3.49, p = .001, d = 1.22 for
Adaptive vs. Random, and t(34) = 3.07, p = .004, d = 1.09 for Adap-
tive vs. Adaptive/Mini-blocks) and at delayed posttest
(t(34) = 3.14, p = .004, d = 1.1, and t(34) = 3.17, p = .003, d = 1.12),
whereas the difference between Random and Adaptive/Mini-
blocks conditions was not reliable (in either immediate or delayed
posttest, both ps > .40). In percentage terms the Adaptive condition
was 38% more efficient than Random in the immediate posttest
and 39% more efficient than Random in the delayed posttest. Effect
sizes for these comparisons exceeded 1.0 in both posttests. All
conditions showed a reliable decrease in efficiency between
immediate and delayed posttests (all ps < .002). There was no reli-
able main effect of familiarity (F(1,51) = 0.01, p = .91, gp < 0.001),
nor any reliable interaction between familiarity and phase
(F(2,51) = 1.06, p = .31, gp = 0.02), familiarity and condition
(F(2,51) = 0.49, p = .62, gp = 0.02), or between condition and phase
(F(2,51) = 0.07, p = .93, gp = 0.002). The lack of main effects or
interactions involving familiarity indicate that, unlike Experiment
1, there was no advantage in the posttests for novel vs. previously
exposed stimuli.

Trials to retirement differed between conditions; participants
averaged 125.3, 174.8, and 234.9 trials in the Adaptive, Adaptive/
Mini-blocks, and Random conditions, respectively. A one-way AN-
OVA with condition as the factor showed a reliable difference
(F(2,51) = 10.04, p < .001, gp = 0.28). Paired comparisons indicated
that all three conditions differed from one another. The Adaptive
condition required fewer trials than the Random condition
(t(34) = 3.82, p = .001, d = 1.36); the Adaptive/Mini-blocks condi-
tion required fewer trials than Random (t(34) = 2.17, p = .037),
and the Adaptive condition required fewer trials than the Adap-
tive/Mini-blocks condition (t(35) = �3.46, p = .002).

Raw accuracy data (not corrected for number of trials invested)
are shown in Fig. 6B for each condition in both immediate and de-
layed posttests. A 3 � 2 ANOVA, with scheduling condition as a be-
tween-subjects factor and posttest phases as a within-subjects
factor showed a marginally reliable main effect of condition
(F(2,51) = 2.71, p = .076, gp = 0.09), a reliable effect of test phase
(F(1,51) = 86.3, p < .001, gp = 0.63), and a reliable test phase by con-
dition interaction (F(2,51) = 3.62, p = .034, gp = 0.12). Accuracies in
the Random condition numerically exceeded those in the Adaptive
and Adaptive/Mini-blocks conditions in both the immediate and
delayed posttests (Immediate: M: .90 vs. .81 & .82, respectively;
Delayed: M: .79 vs. .72 & .65, respectively). Individual comparisons
confirmed a reliable difference between the Random and Adaptive
conditions on the immediate posttest (t(34) = 2.19, p = .04,
d = 0.73), but consistent with the observed interaction, the differ-
ence was not reliable at delayed posttest (t(34) = 1.47, p = .15,
d = 0.49). No reliable differences were found in immediate posttest
accuracy between the Random and Adaptive/Mini-blocks condi-
tion or between the two Adaptive conditions (ts(34) = 1.62 and
0.29, ps = 0.11 and 0.77 respectively). At delayed posttest, there
was no reliable difference between Adaptive and Adaptive/Mini-
blocks (t(34) = 1.09, p = .28, d = 0.37), but there was a reliable
difference between Random and Adaptive/Mini-blocks
(t(34) = 2.49, p = .01, d = 0.84).

As in Experiment 1, we compared accuracies across conditions
at a moment in training when each participant had accumulated
about the same number of learning trials. Mean trials to criterion
was 125 in the Adaptive condition (SD = 49.9), and proportion cor-
rect for the last two presentations of each stimulus category for
this condition at this point in training was .99 (see Fig. 6C). In
the Random and Adaptive/Mini-blocks conditions, performance
measured from the 125th trial on the last two presentations of
each category was .91 and .93 respectively. A one-way ANOVA
comparing the learning conditions on this measure showed a reli-
able main effect of condition (F(51) = 7.28, p = .002). Individual
comparisons indicated that accuracy was reliably higher in the
Adaptive condition than in the Random condition (p = .002) and
also reliably higher in the Adaptive condition than in the Adap-
tive/Mini-blocks condition (p = .035). There was no reliable differ-
ence in accuracy after 125 trials between the Adaptive/Mini-blocks
and Random conditions (p > .83) (all ps Bonferroni corrected).

Response times in the immediate posttest averaged 3.41, 3.48,
and 2.64 s per trial in the Adaptive, Adaptive/Mini-blocks, and Ran-
dom conditions, respectively. In the delayed posttests, response
times were more similar across conditions, with the Adaptive,
Adaptive/Mini-blocks, and Random conditions averaging 3.73,
3.68, and 3.33 s per trial respectively. These observations were
confirmed by a 3 � 2 � 2 ANOVA across scheduling condition,
posttest phase and familiarity which found a marginally significant
main effect of condition (F(2,51) = 2.83, p = .07, gp = 0.10), a main
effect of phase (F(1,51) = 11, p = .002, gp = 0.17), and a main effect
of familiarity (F(1,51) = 4.84, p = .032, gp = 0.86). There were no
interactions between the factors (all ps > .20). Examining the effect
of scheduling condition, there were significantly lower RTs for the
Random condition than Adaptive (t(34) = 2.37, p = .02, d = 0.79)
and Adaptive/Mini-blocks (t(34) = 2.01, p = .05, d = 0.69), but no
difference between the two Adaptive conditions (t(34) = 0.03,
p = .98, d = 0.01). Examining differences between immediate and
delayed posttests, there were significant increases in RT for Ran-
dom (p < .001), but not for Adaptive or Adaptive/Mini-blocks (both
ps > .20). Individual comparisons showed that in the immediate
posttest, response times in the Random condition were shorter
than in either of the other conditions (Random vs. Adaptive,
t(34) = 2.74, p = .02, Bonferroni corrected; Random vs. Adaptive/
Mini-blocks, t(34) = 3.08, p < .012, Bonferroni corrected). Response
times did not differ between the two Adaptive conditions
(t(34) = 0.113, p = .91). In the delayed posttest, there were no reli-
able response time differences between any two conditions (all
ts(34) < 1.0, ps > .59, Bonferroni corrected).

3.3. Efficiency and transfer across experiments

We compared learning results across Experiments 1 and 2. First,
a 3 � 2 � 2 � 2 ANOVA with between-subjects factors of schedul-
ing condition and experiment, and within-subject factors of post-
test phase and stimulus familiarity, showed a reliable main effect
of condition (F(2,102) = 10.79, p < .001, gp = 0.174), a large main ef-
fect of test phase (F(1,102) = 132.6, p < .001, 0.56), no main effect
of experiment (F(1,102) = 2.30, p = .13, gp = 0.022) and a margin-
ally significant interaction of scheduling condition and experiment
(F(2,102) = 2.89, p = .06, gp = 0.053). There was also a main effect of
stimulus familiarity (F(1,102) = 7.67, p = .007, gp = 0.07), and an
interaction between stimulus familiarity and experiment
(F(1,102) = 8.65, p = .004, gp = 0.078). No other interactions were
significant (all ps > .17). Individual comparisons showed that the
source of the main effect of condition was greater efficiency in
the Adaptive condition than in either of the other conditions
(Adaptive vs. Random, t(70) = 3.82, p < .001, d = .95; Adaptive vs.
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Adaptive/Mini-blocks, t(70) = 3.10, p < .002, d = .77). The Adaptive/
Mini-blocks and Random conditions did not differ reliably
(t(70) = 1.12, p = .27, d = 0.26). The same pattern of results ap-
peared when looking separately at results from the immediate
posttest (Adaptive vs. Random, t(70) = 3.89, p < .001, d = 0.96;
Adaptive vs. Adaptive/Mini-blocks, t(70) = 2.95, p < .004, d = 0.73;
Adaptive/Mini-blocks vs. Random, t(70) = 1.51, p = .14, d = 0.36 or
delayed posttest (Adaptive vs. Random, t(70) = 3.64, p < .001,
d = 0.91; Adaptive vs. Adaptive/Mini-blocks, t(70) = 3.18, p < .002,
d = 0.79; Adaptive/Mini-blocks vs. Random, t(70) = .67, p = .51,
d = 0.16.

The condition by experiment interaction was due primarily to
somewhat better efficiency shown by the Adaptive condition in
Exp. 2 compared to Exp. 1 (t(34) = 2.03, p = .05, d = 0.69). Neither
the Adaptive/Mini-blocks nor Random conditions differed reliably
between Experiments 1 and 2 (ps = .64 and .83 respectively). The
interaction of stimulus familiarity and experiment reflects the lack
of any posttest advantage for novel stimuli in Experiment 2, unlike
Experiment 1, which showed a clear difference.
4. General discussion and conclusion

4.1. General discussion

In two experiments, we studied PL in a rich, natural domain that
was unfamiliar to the participants. As in many real-world PL tasks,
the goal of learning is to discover and encode features and relations
that determine natural categories, allowing the learner to accurately
classify previously unobserved instances. Specifically, we tested
whether an adaptive sequencing algorithm implementing principles
of spacing in an individualized manner could improve PL for natural
categories. The algorithm varied intervals between presentations of
new instances of each learning category based on each learner’s
accuracy and RT in classifying instances of that category.
4.1.1. Effects of adaptive sequencing on perceptual learning
In both experiments, we found evidence of greater learning effi-

ciency for adaptively sequenced learning over random presenta-
tion, in both immediate and delayed posttests. We included a
test after a one-week delay, because immediate and delayed tests
sometimes differ in interesting ways, and testing after a delay re-
moves possible influences of relatively transient effects and is
therefore considered a better measure of learning (Schmidt &
Bjork, 1992). In Experiment 1, with higher variability categories
(exemplars chosen from within any species in a genus), the effi-
ciency advantage of adaptive sequencing was clearest for novel
items in the posttests and for all items in the delayed posttest,
which showed a 29% efficiency advantage over random presenta-
tion. Moreover, effect sizes for Adaptive vs. Random for both
immediate and delayed posttests averaged around .7. Adaptive
sequencing also reliably outperformed random presentation on a
pure accuracy measure when learning conditions were compared
after the same number of learning trials.

These learning effects were magnified in Experiment 2, in which
lower variability categories (using only one species per genus)
were used. In this experiment, the Adaptive condition showed
highly reliable advantages over the Random condition in efficiency
on both immediate and delayed posttests (on the order of 38–39%);
for both familiar and novel items; and also when accuracy was
compared directly across groups after the same number of learning
trials.

The results have significance for understanding high-level PL in
general and for applications of PL in real-world education and
training domains. The spacing effect is one of the most important
and robust principles of learning and memory (Dempster, 1988),
and with memory for factual material, adaptive learning schemes
have been shown to enhance efficiency by tailoring spacing to
the individual learner’s course of acquisition of each item to be
learned (Atkinson, 1972; Mettler, Massey, & Kellman, 2011; Pavlik
& Anderson, 2008). The present work may be the first to apply
adaptive spacing to PL. The present results indicate that adaptive
sequencing can robustly improve learning. The effect sizes (ranging
from around .7 in Exp. 1 to 1.2 in Exp. 2), as well as the percentage
advantages in efficiency (25–29% in Exp. 1 to around 38–39% in
Exp. 2) are of sufficient magnitude to be of substantial value in
improving learning in complex learning domains in real-world
settings.

4.1.2. Spacing in perceptual learning and factual learning
These results may also offer some insight into relations between

PL and factual learning, where spacing has been more extensively
investigated. In our studies, a fundamental principle in the adaptive
condition was the stretching of the recurrence interval for catego-
ries based on speed of responding. The present findings that adap-
tive spacing improves PL for natural categories parallel similar
effects of adaptive spacing for memory items. As such, it raises
the question of what learning mechanisms may be shared across
these domains. Storage of items in memory (fact or item learning)
and discovering structure in displays that allows classification of
new instances (PL) appear to involve substantially different mech-
anisms. In memory research, retesting an item when it is just about
to be forgotten is usually considered in terms of memory trace de-
cay (Pyc & Rawson, 2009), but in PL, learning progresses by more
selective and fluent information extraction from presented dis-
plays. We believe that the common link is not that factual memory
and PL involve the same mechanisms, but that a common principle
of optimal learning applies to both. As learning to extract relevant
information improves for one category, it becomes desirable to
have a longer interval and/or more trials with intervening catego-
ries before returning for further practice on the initial category.
PL involves discovery of invariance and allowable variation with
categories (Gibson, 1969), but perhaps the most crucial component
of PL is coming to encode distinguishing features between categories
(Gibson, 1969). This process may be optimized by modulating the
numbers of trials of intervening categories depending on the
strength of that category. If the learner is a poor classifier of in-
stances of a category, many intervening trials of other categories
may impede learning, but as learning improves, more intervening
category experiences may be optimal. Although the underlying pro-
cesses for item memory and PL are unlikely to be the same, learning
in both domains can be enhanced by adjusting spacing to match
changes in learning strength. And in both domains, because learn-
ing strength may not be predictable in advance and may vary by
learners and categories, adaptive scheduling based on updated
learning strength estimates, as was done here by the use of re-
sponse times, may offer advantages over predetermined schedules.

4.1.3. Category variability in PL
The advantage for lower variability categories can be easily

interpreted in this context. The ARTS system uses response times,
along with accuracy, from earlier trials to estimate learning
strength. When a specific item recurs, as in factual learning con-
texts, an accurate and faster response can be straightforwardly
interpreted as an improvement in learning. A primary goal of the
present work was to investigate if accuracy and speed can also be
used to guide the scheduling of PL, where categories recur over
spacing intervals but presented instances are novel. The results
indicate that adaptive sequencing of categories is indeed beneficial,
but the benefit is greater for categories with lower variability among
instances. The instances of higher variability categories may involve
a greater array of features and relations to be encoded; thus, a



Table 1
Parameters for the adaptive sequencing algorithm in Experiments 1 and 2.

Parameter Value

a – Counter weight 0.1
b – Default weight 1.1
r – RT weight 1.7
W – Incorrect priority increment 20
D – Delay constant 2

E. Mettler, P.J. Kellman / Vision Research 99 (2014) 111–123 121
learner’s performance on an earlier instance of a category may be an
imperfect predictor of learning strength for another item. High var-
iability categories might even be disjunctive, in the sense that there
is more than one characteristic that confers membership, or in the
sense that irrelevant variation may differ from instance to instance.
Where such differences exist, performance measured from one
instance might provide little indication of the learning strength
for another instance. Gibson’s classic work on PL emphasized
discovery of invariance, but many natural categories may have a
family resemblance structure (Rosch & Mervis, 1975; Wittgenstein,
1953). Perhaps even more crucially, the process of discovering dis-
tinguishing features of categories (Gibson, 1969) may also involve
learning to ignore characteristics that are not diagnostic of category
membership. These may also vary across instances of a single
category.

We close this issue by noting that the situation may actually be
more complicated. PL in category learning involves the discovery
and selective encoding of diagnostic characteristics that govern
category membership. Explanations of PL based on selection have
been supported by considerable empirical and modeling work
(e.g., Petrov, Dosher, & Lu, 2005). In PL contexts involving categori-
zation of complex, multidimensional stimuli, one implication of
selection is that, as learning progresses, members of the same cat-
egory will likely come to resemble each other more. In this sense,
the perceived ‘‘variability’’ of instances of a category likely changes
through PL. It might be interesting in future research to develop
measures of perceived similarity to look at stimulus variability as
a dependent variable that changes in PL, in addition to its effects
as an independent variable as in the present research.

4.1.4. Transfer in perceptual learning
A hallmark of perceptual learning in real-world domains is

transfer of learning. Learners become able to accurately and flu-
ently classify new exemplars of previously learned categories. To
ascertain that true PL, rather than memorization of instances,
was involved in the present studies, we used posttests with both
familiar and novel instances. All of our results indicate that novel
instances were classified at least as accurately as familiar in-
stances. These outcomes indicate both that participants attained
classification skills that generalized to previously unseen cases
and also that our efforts to minimize instance repetitions during
learning were successful.

The results of Exp. 1 actually suggested better performance for
novel exemplars, and this tendency was strongest in the Adaptive
condition at delayed posttest. While we cannot rule out some pos-
sible effect of interest here, this seems to us to be most likely an
inconsequential finding. The set of novel exemplars used in the
posttests was the same for all conditions, and this set may have
simply been, on average, slightly less difficult than the familiar in-
stances used in the posttest. No advantage for novel items ap-
peared in Experiment 2, which used a different, fixed set of
posttest items. If, paradoxically, there is some reason that PL in
some conditions is actually stronger for novel instances, the cur-
rent experiments were not designed to reveal this clearly. Use of
a ‘‘jackknife’’ procedure, where each subject is presented different
novel instances, would be preferable for a study focused on this is-
sue. Our use of novel and familiar posttest items allowed clear
comparisons across conditions, and provided clear evidence for
transfer of learning, but it did not provide clear evidence for a nov-
elty advantage.

4.1.5. Partial blocking in PL
Our data offer little or no support for initial blocking or massing

of instances of a given category. At best, the Adaptive/Mini-blocks
condition in the present experiments produced performance
nearly equivalent to the Adaptive condition; it was often some-
what worse, and never better. The intuition behind blocking is that
learning of commonalities within each category should be facili-
tated by seeing several instances in succession. This intuition ap-
pears to be incorrect, however. Earlier work (Kornell & Bjork,
2008) compared complete blocking to complete interleaving in
studying examples of different artists’ painting styles and found
a clear advantage of interleaving. In our Adaptive/Mini-blocks con-
dition, we investigated whether some initial blocking, followed by
interleaved, spaced practice might aid early learning of categories
while still capturing the benefits of interleaving later. This ap-
proach never produced better performance than the regular Adap-
tive condition, in which there was consistent interleaving. It
appears that stimulus presentation that facilitates the learning of
contrasts that distinguish categories may be of greatest importance
in arranging PL.

4.1.6. Learning to criterion in PL
The studies reported used learning to criterion. Probably for

reasons of experimental control, this is quite rare for studies of
spacing in learning. It is, however, of primary importance in real
learning settings. The most obvious methodological difficulty of
studies using learning to criterion is that different participants
and conditions will require different numbers of learning trials.
The efficiency measure addressed this issue by combining both
posttest accuracy and the number of learning trials invested; such
a measure is likely to be useful in real-world learning settings
where mastery in the shortest time is desirable. As reaching crite-
rion in our Random condition generally required more trials than
in the Adaptive condition, it is important to consider whether this
feature alone provided the advantage of adaptive sequencing. To
address this issue, we also examined accuracy after a similar num-
ber of learning trials in each group. As with the efficiency measure,
this ‘‘apples to apples’’ comparison of accuracy also clearly showed
advantages of adaptive sequencing.

A final note concerns our choice of comparison conditions. We
chose to compare sequencing algorithms against random presenta-
tion – a notoriously effective schedule of practice that produces ro-
bust, albeit inefficient, learning in a variety of contexts. For
example, random presentation automatically implements a type
of spaced interleaving, and when unmodified, as in our experiment,
can result in repeated presentation of critical stimulus material.
Though random presentation has fared poorly in some experi-
ments that have compared scheduling algorithms to random prac-
tice (as in Atkinson, 1972), it may be that in a learning domain with
as few categories as in our experiment (12 categories), the benefits
of random presentation may be quite large (compared to, for in-
stance, learning a large number of independent factual items).
The fact that our algorithms performed as well as they did is thus
encouraging. Presumably, if we had compared adaptive sequencing
to massed practice (blocking of all category exemplars) adaptive
sequencing would have fared even better (c.f., Kornell & Bjork,
2008).

4.2. Conclusion

It is becoming increasingly clear that perceptual learning com-
prises a pivotal component in domains where humans attain high
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levels of expertise, including high-level cognitive domains that
have traditionally been considered to have little to do with percep-
tion (for recent reviews, see Kellman & Garrigan, 2009; Kellman &
Massey, 2013). More than one aspect of perceptual learning is
important, including both discovery effects – finding the informa-
tion relevant to a classification – and fluency effects – coming to
handle the input quickly and/or with lower cognitive load (Gibson,
1969; Goldstone, 1998; Kellman & Garrigan, 2009; Shiffrin &
Schneider, 1977). Perhaps most important in complex tasks is dis-
covery of structural information amidst task-irrelevant variation
(Gibson, 1969), with the hallmark of this kind of PL being that
the learner can accurately and fluently classify previously unseen
instances. Whether we consider a child who learns to see a new
animal and correctly say ‘‘cat,’’ the skilled instructor who accu-
rately derives language structure from a student’s poor handwrit-
ing, the ‘‘chick sexers’’ described by Gibson (1969) or the
scientist intuitively grasping patterns in equations and graphs,
the discovery of relevant structure and the ability to use it in
new cases is important.

Both basic research and understanding of the widespread impli-
cations of perceptual learning raise questions about how to opti-
mize it. Although a great deal of work has been done to
understand principles of factual or procedural learning, relatively
little work has asked these same questions about PL. No previous
studies that we know of have investigated how adaptive spacing
techniques might fare when learning consists, not of the memori-
zation of words or facts, but in attuning perceptual systems to ex-
tract structure. Here we have shown that adaptive scheduling
strategies that enhance declarative learning domains also apply ro-
bustly to learning perceptual classifications. Adaptive techniques
lead to more efficient perceptual learning; these effects are stron-
gest when categories have less internal variability rather than
more; and the effects lead to transfer in classifying novel instances
that is fully as accurate as performance on cases previously
observed.
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