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Abstract 

Recent research suggests that combining adaptive learning 
algorithms with perceptual learning (PL) methods can 
accelerate perceptual classification learning in complex 
domains (e.g., Mettler & Kellman, 2014). We hypothesized 
that passive presentation of category exemplars might act 
synergistically with active adaptive learning to further 
enhance PL. Passive presentation and active adaptive methods 
were applied to PL and transfer in a complex real-world 
domain. Undergraduates learned to interpret real 
electrocardiogram (ECG) tracings by either: (1) making active 
classifications and receiving feedback, (2) studying passive 
presentations of correct classifications, or (3) learning with a 
combination of initial passive presentations followed by 
active classification. All conditions showed strong transfer to 
novel ECGs at posttest and after a one-week delay. Most 
notably, the combined passive-active condition proved the 
most effective, efficient, and enjoyable. These results help 
illuminate the processes by which PL advances and have 
direct implications for perceptual and adaptive learning 
technology. 

Keywords: perceptual learning; educational technology; 
active learning; passive learning; medical education 

Introduction 
Experts in many domains differ from novices in their ability 
to see patterns at a glance (Gibson, 1969).!A radiologist can 
quickly recognize a tumor in an x-ray (Lesgold et al., 1988). 
A chess master can, at a glance, spot an impending 
checkmate multiple moves in advance (c.f., Chase & Simon, 
1973). These important patterns –! including relations that 
are quite abstract –!are often invisible to novices; yet experts 
can recognize them rapidly and automatically. Such fluent 
pattern recognition characterizes experts in many domains 
of human expertise and largely develops from perceptual 
learning, defined by Gibson (1969) as experience-induced 
improvements in the extraction of information. !

Until recently, perceptual learning (PL) has received little 
attention in instruction. Both familiarity with PL and 
suitable instructional methods have been lacking. Under 
unsystematic learning conditions, attaining expert pattern 
recognition may require many years of practice. !

Recent research, however, has shown that PL can be 
systematically accelerated in real world learning domains 
(e.g., Goldstone, Landy, & Son, 2008; Kellman & Massey, 
2013; Kellman, Massey & Son, 2009). In our work, PL 
methods are realized in perceptual and adaptive learning 
modules (PALMs). PALMs combine PL techniques with 

adaptive learning technology that uses both accuracy and 
speed to optimally sequence categories, determine mastery, 
and focus learning where it is most needed (e.g., Mettler & 
Kellman, 2014). These methods advance students’ grasp of 
crucial structures and relations, develop fluency, and support 
transfer in mathematics (e.g., Kellman et al., 2009), medical 
learning (e.g., Krasne et al., 2013) and other domains 
(Mettler & Kellman, 2014). 

Much is unknown about the cognitive components of 
adaptive PL and how these might be integrated to optimize 
the development of expertise in real-world settings. PALMs 
typically employ active classification practice, but does 
active classification better support PL than passive 
exposures to appropriate classifications? The little research 
done on this topic is not conclusive.  

Active classification refers to learning tasks where the 
learners select a category label for a presented example and 
receive feedback that informs their perceptual, attentional 
and decision processes. Passive learning provides the same 
category membership information, but learners study the 
example and the category label without engaging in the 
choose-and-correct cycle.  

Benefits of active retrieval have been well studied  in the 
memory literature. The testing effect (Roediger & Karpicke, 
2006) refers to the idea that when learners actively engage 
with the learning material by answering test questions, 
memory is improved. The improvement usually exceeds  
learning gains obtained from repeated passive study of the 
same information (e.g., Roediger & Karpicke, 2006). Most 
research on the testing effect has involved declarative 
memory, but similar principles may apply to PL.  

Ordinary experience suggest that passive exposure alone 
can lead to discovery of relevant features and relations in 
PL. Children learn to tell dogs from cats by seeing a number 
of instances of dogs and cats. Novice wine drinkers can 
learn to discriminate between wines without any instruction 
(Hughson & Boakes, 2009). People can learn to recognize 
the styles of artists in new paintings by passive viewing of 
multiple samples of each artist (Kornell & Bjork, 2008).  

In some cases, passive presentations may actually be 
better than active presentations. Passive presentation in the 
form of worked examples is the preferred mode of learning 
for novices (e.g., Recker & Pirolli, 1995), and is an effective 
instructional alternative to solving problems in a variety of 
domains. Paas and van Merrienboer (1994) studied student 
learning of geometrical problem solving skills and found 
that when students studied worked examples of problems 
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(passive), they attained better accuracy on solving new 
problems than those who had to solve problems from scratch 
(active). Paas and van Merrienboer postulated that a 
considerable part of the mental effort in the active condition 
was allocated to processes that were irrelevant for learning. 
Those in the passive condition, on the other hand, could 
focus on the relevant aspects of problem structure and 
solutions, thus requiring less training time and less mental 
effort. Passive learning trials also offer error-free exposures 
to the classifications to be learned, eliminating residual 
effects of incorrect guesses that may occur in active 
learning. Conversely, Bodemer & Faust (2006) found that 
when asking students to make active connections between 
multiple representations of fractions, they were better able to 
understand the underlying structures of fractions than when 
they passively observed the correspondences. 

Research on category learning suggests that passive and 
active processes have complementary benefits. An active 
task tends to encourage learners to focus on information that 
distinguishes categories, while a passive task tends to 
engage them with finding within-category regularities (e.g., 
Markman & Ross, 2003; Carvalho & Goldstone, 2014). In a 
recent article, Levering and Kurtz (2015) compared the 
category knowledge produced by an active classification 
task and a passive observational learning task. They trained 
participants to discriminate between two artificially created 
categories, each with 5 stimuli, in which a single feature 
determined category membership and other features 
correlated but did not perfectly predict category 
membership. They found that the active learning task biased 
learners toward more discriminative learning compared to 
the passive learning task. However, passive learning allowed 
for enhanced sensitivity to the features that were not 
perfectly predictive.  

It is possible that combining passive and active learning 
may be most beneficial. This hypothesis accords with 
research on skill acquisition by Renkl, Atkinson, and 
colleagues under the ACT-R framework (e.g., Atkinson, 
Derry, Renkl, & Worthham, 2000; Renkl, Atkinson & 
Grobe, 2004), in which passive study of examples is 
valuable early in training. Much of this work focused on 
procedural problem solving domains, for which a smooth 
transition (fading) from study of worked-out examples to 
problem solving may be ideal. Initial passive presentations 
can reduce cognitive load early in training when it is highest 
by not having to engage in decision-making processes, 
resulting in fewer unproductive learning events (Renkl et al., 
2004). Active learning, in contrast, forces guessing at the 
start, which might lead to cognitive overload. Wrong 
guesses or hypotheses may also tend to linger and impede 
later learning. In addition, being forced to produce responses 
without knowing much may be frustrating, undercutting 
motivation in some learners.  

Most potential advantages of passive exposure can be 
realized by using passive trials only at the start of learning. 
Initial passive study in PL might focus learners’ attention on 
specific features that define each category and in turn 
support the acquisition of the category representation. As the 

learning progresses, active learning can support 
discriminative processes needed for correct classification. 
Active learning after an initial stage may be especially 
valuable in an adaptive framework. We sought to test this 
hypothesis in a real-world, complex PL domain. 

We trained undergraduates to classify seven diagnostic 
patterns in electrocardiography. The 12-lead 
electrocardiogram (ECG) is one of the oldest and most 
informative cardiac assessments available. Visual 
interpretation of ECGs, however, requires superior 
perceptual recognition skills ordinarily attainable only 
through years of practice (Wood, Batt, Appelboam, Harris & 
Wilson, 2013). One difficulty is discriminating relevant 
from irrelevant information in ECGs. For any category, 
some locations contain relevant information while some do 
not. Each category involves patterns of diagnostic features, 
but the features are variable across the ECG traces. Salient 
features of an ECG trace do not necessarily indicate an 
abnormality, and waveforms that indicate normality at one 
location may not be normal at another. Thus, learners have 
to know not only what to look for but also where to look. 

 We created three versions of an ECG PALM involving: 
(1) only active classification of ECGs for the underlying 
diagnostic pattern, (2) only passive presentations of the 
correct interpretations, (3) initial passive presentations 
followed by active classifications (passive-active condition). 
The active and passive-active conditions involved 
classification with feedback and were adaptive to the 
learner’s performance, and the passive training involved 
study of the correct interpretations and was not adaptive. To 
compare learning across conditions, we examined 
participants’ ability to correctly and quickly classify novel 
ECG traces into trained categories of diagnostic patterns. All 
active trials used an adaptive learning system – the ARTS 
(Adaptive Response-time-Based Sequencing) system 
(Mettler & Kellman, 2014).  

Method 
Participants  
87 undergraduates from University of California, Los 
Angeles without any prior knowledge of ECG interpretation 
participated in the experiment for course credit.  

Materials  
The materials consisted of 250 unique 12-lead ECG traces 
from real patients, with 26 - 46 unique traces for each of 
seven categorical diagnostic patterns. The seven patterns 
were: Normal, Acute Anterior ST Segment Elevation 
Myocardial Infarction, Acute Inferior ST Segment Elevation 
Myocardial Infarction, Right Bundle Branch Block, Left 
Axis Deviation, Right Axis Deviation, Old Inferior 
Myocardial Infarction. 

The training consisted of two phases: a brief primer on 
ECG interpretation (same for all conditions) and the PALM 
phase with either active, passive, or passive-active task 
formats. The primer was a PowerPoint slideshow consisting 
of a brief explanation of the ECG, how to measure widths 
and heights on the ECG grid, and one example of a typical 
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ECG trace for each diagnostic pattern. In each example, the 
relevant features were marked and described, similar to 
samples provided in textbooks. No other information about 
the heart anatomy, physiology, or other basics of ECG 
interpretation was provided in the primer.  
 In the active PALM, on each trial, participants chose 
among seven choices the diagnostic category for a given 
ECG trace. Figure 1a shows an example trial. Accuracy and 
speed were continually tracked; trial feedback was given 
after each response and block feedback was given after 
every 12 trials. The trial feedback played a sound 
corresponding to the correctness of the response, and 
displayed the correct answer, and response time when 
correct. It also marked relevant features on the ECG, along 
with a brief description of those features as seen in the 
primer. Block feedback provided average accuracy and 
speed by block and percentage of categories completed. 
Feedback screens were not timed. Figure 1b shows an 
example feedback screen following an incorrect response. 
Categories were adaptively sequenced based on both 
accuracy and response times as according to the ARTS 
sequencing algorithm (see Mettler & Kellman, 2014). 
Categories were dropped (retired) from the training set after 
reaching learning criteria (i.e., correctly identified 
consecutively in 4 out of 4 presentations, each in under 15 
seconds). Participants completed the module when they had 
retired all 7 categories.  

In the passive PALM, each trial was the same as the 
correct trial feedback screen for the active group (similar to 
Figure 1b). The correct label, the relevant features and their 
descriptions were provided, and participants were asked to 
pay attention and to study each correct diagnosis. The 
passive condition thus did not have classification feedback 
and was not adaptive. To equate the total number of trials 
across two groups, we yoked each participant in the passive 
training condition to the total number of trials seen by 
another participant in the active training condition. To 
determine how many items per category to show, we used 
the average proportions of trials per category that a pilot 
group of active participants needed to complete the module. 
These proportions were similar across active participants, so 
we used the same proportions for all passive participants. 
The duration of each passive trial was 13 seconds, 

determined from the average amount of time it took pilot 
participants in the active group to respond and view the trial 
feedback. After 13 seconds, the screen cleared. To keep the 
participants engaged and to equate the existence of a motor 
response with the active condition, participants had to click 
on a Next button to see the next trial, and there was a sound 
played to signal the beginning of each trial. There was an 
untimed break every 12 trials. 

In the passive-active PALM, participants viewed a set of 
14 passive trials (two examples from each category) as in 
the passive condition, in random order, before moving on to 
the adaptive active classification trials for which participants 
received the same feedback and learning criteria as those in 
the active classification condition. All three PALMs used 
the same pool of ECGs. 

Three assessments, each consisting of 14 new ECG’s (two 
from each category), were used in counterbalanced order as 
pretest, posttest, and delayed-posttest. None of the ECGs 
used in the assessments appeared in the PALM. Each 
assessment trial presented an ECG and seven answer 
choices (Figure 1a). No feedback was given after each trial. 

Procedure and Design 
Participants were given 20 minutes to study the primer 
followed by a quiz on which they were asked to match the 
descriptions of the diagnostic features to each of the seven 
heart patterns shown on the primer. This was to ensure that 
participants were familiar with the diagnostic features of 
each heart pattern. They checked their answers afterward.  

After the quiz, participants took the pretest and were 
randomly assigned to learn with either the active, passive, or 
passive-active PALM. When participants finished the 
module (or after the 2-hour time allotted), they completed 
the posttest and a survey. The survey asked about their prior 
knowledge of ECG reading, amount of sleep they had the 
night before, and demographic information (age, gender, 
English fluency). Because passive and active training may 
differ not only in cognitive aspects of learning, but also in 
the motivational and engagement aspects, we asked 
participants to report their levels of engagement and 
enjoyment of the training experience, and to provide a 
judgment of learning and memory for the delayed test. 
Participants returned for the delayed-posttest one week later. 

Figure 1.  
(a) Sample 
active 
classification 
trial;  
(b) feedback 
provided 
when 
incorrect.  
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Dependent Measures, Data Analyses and Hypotheses 
Based on prior work, we expected all PALMs to produce 
robust improvements in classification, and the passive-active 
group to produce the best results. Because we used learning 
to criterion, our primary measure was learning efficiency, 
defined as accuracy gain from pretest to posttest divided by 
minutes invested in the training. We expected the active 
group to have greater improvements in accuracy and/or 
response time (for correct answers -- RTc) than the passive 
group. We used analysis of covariance (ANCOVA) in 
analyzing differences among the groups in accuracy gain, 
RTc change, and Efficiency because of possible differences 
in pretest mean values between groups.1 Participants in the 
active group on average retired 87.3% and the passive-active 
89.9% of the categories. To compare the effectiveness of the 
training conditions, we report results from participants who 
completed the assigned modules (N = 23 per condition). The 
same patterns of results were found with all participants (N 
= 27 per condition). Yoking by number of trials was not 
perfect for 5 pairs of participants; however, we retained 
them in the analyses because (1) removing them did not 
change the results, and (2) total trials and training times 
were similar between the active and passive groups. The 
three groups did not differ on quiz performance or any other 
measures not reported here. Because we sought to compare 
differences across training conditions, we conducted 
planned comparisons across conditions. All statistical tests 
were two-tailed, with a 95% confidence level.2  

Results and Discussion 
Figure 2 shows the average accuracy, RTc at each test 
phase, and efficiency scores by condition. As expected, 
participants showed substantial learning gains from pretest 
to posttest and retained much of their learning at delayed 

                                                
1 Assumptions for ANCOVA were met for all dependent variables, 
F’s < 1, p’s > .05.  
2 Due to small sample size, we followed the recommendations of 
Nakagawa (2004) and provided effect size estimates to evaluate the 
strength and direction of each relationship in our multiple tests.  

posttest, regardless of condition. Participants were able to 
interpret ECGs they had never seen before and to do so with 
improved speed. The passive-active condition produced the 
greatest learning gain with the fewest training trials. The 
active condition also produced greater learning gains than 
the passive condition. Table 1 contains the descriptive 
statistics from the training for each condition.  

Accuracy  
 Accuracy Gain. We analyzed accuracy gain (posttest 

minus pretest) in a 2 phase (pre-post, pre-delayed) x 3 
condition (active, passive, passive-active) repeated-
measures ANCOVA with pretest accuracy as the covariate. 
The covariate, pretest accuracy, was significantly related to 
the posttest gains, F(1,65)  = 48.89, p < .001, η2 = .43. 
Indeed, better pretests predicted less improvement at 
posttest, r = -.43, p < .001, and delayed test, r = -.55, p < 
.001, suggesting that pretest variations were largely due to 
chance. After controlling for the effect of the pretest, there 
was a reliable effect of condition, F(2, 65) = 6.00, p < .01, η2 

= .16. The active and passive-active conditions produced 
higher gains than the passive condition, t(44) = 2.18, p < 
.05, d = .64; t(44) = 2.41, p < .05, d = .71, respectively. 
There were no reliable differences in accuracy gains 
between the passive-active and active conditions, t(44) = 
.68, p > .05, and no significant interactions (p’s > .05).  

There was a statistically significant main effect of phase, 
F(1, 65) = 5.54, p < .05, η2 = .08. The pre-post accuracy 

  Condition 
Total Trials 
Completed 

Minutes on 
Training 

Training 
Accuracy  

Active 167.52 (11.82) 43.96 (3.37) .49 (.02) 

Passive-Active 137.78 (6.69) 37.70 (2.68) .57 (.02) 

Passive 159.74 (8.64) 47.91 (2.40) -- 

Figure 2. (a) Accuracy, (b) Response times on correct answers, (c) Training efficiency across conditions. Error bars ± 1SE. 
 

Table 1. Average training performance across the three 
experimental groups (Standard errors in parentheses). Both 
passive and active trials were included in total trials 
completed for the passive-active condition.  
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gain was reliably higher than the pre-delayed gain (34% vs. 
16%, respectively, d = .81).  

  Raw Accuracy. We also compared raw accuracy across 
groups. A 3 phase (pre, post, delayed test) x 3 condition 
ANOVA confirmed a main effect of condition, F(2,66) = 
4.61, p < .05, η2 = .12. The passive-active condition 
outperformed both the active, t(44) = 2.15, p < .05, d = .62, 
and passive conditions, t(44) = 2.64, p < .05, d = .78, on 
overall accuracy. Active and passive did not differ reliably, 
t(44) = 1.23, p = .22. There was a marginally significant 
phase x condition interaction, F(4,132) = 1.99, p < .10, η2 = 
.06. There were no condition differences at pretest (p > .10), 
but the passive-active group outperformed the passive group 
at both posttest, t(44) = 2.37, p < .05, d = .70, and delayed 
test (50% vs. 39%), t(44) = 2.75, p < .01, d = .82. The active 
group also had a marginally higher delayed test accuracy 
than the passive group, t(44) = 1.73, p < .10, d = .51. There 
were no other differences among conditions. 

Response Times  
Generally, participants became faster at arriving at the 
correct answers at posttest and delayed test. However, there 
were no reliable effects of condition or phase (pre-post vs. 
pre-delayed post), p’s > .05.  

Efficiency  
After controlling for the effect of pretest accuracy, there was 
a reliable main effect of condition, F(2, 77) = 6.10, p < .01, 
η2 = .14. There were no reliable differences between active 
and passive-active groups in the average efficiency (p = 
.11), but both of the active and passive-active groups had 
better efficiency than the passive group, t(44) = 2.34, p < 
.05, d = .69, and t(44) = 4.41, p < .001, d = 1.01.  

Since there were no condition differences in pretest 
accuracy, we also analyzed efficiency uncorrected for 
pretest variation (assuming that differences seen in pretest, 
before any experimental treatments, were random). Passive-
active outperformed active at delayed test, t(44) = 2.14, p = 
.04, d = .63, and marginally at immediate posttest, t(44) = 
1.87, p = .07, d = .56. Passive-active and active also had 
higher efficiencies than passive at both immediate and 
delayed posttest, t(44) > 2, p < .03, d = .67 to 1.31. 

Progression of Learning 
Figure 3 shows the average accuracy over the first 17 
training blocks for the active and passive-active conditions. 
The passive-active group performed consistently better than 
the active group, t(44) = 3.84, p <.001, d = 1.13, after 3 
blocks, t(44) = 2.79, p < .01, d = .82. This result suggests 
that initial passive exposure speeds learning relative to 
starting with active classification, despite the similar number 
of learning trials in the passive portion and the first active 
trial block. In the first few blocks, the abrupt change from 
passive to active introduced similar error rates as those in 
the active condition. However, after the first few blocks, as 
we expected, those in the passive-active group made fewer 
errors. These gains appear to be preserved through the 
course of learning and in posttests. 

  

Self-Report Ratings  
On the survey, participants differed marginally in how they 
responded to “How enjoyable was the training as a whole, 
on a scale from 1-6 (1 = not at all enjoyable, 6 = very 
enjoyable)”,3 F(2,61) = 2.51, p < .10. The passive-active 
PALM was reliably more enjoyable (M = 4.55, SD = 1.23) 
than the passive PALM (M = 3.76, SD = 1.22), t(47) = 2.01, 
p = .05, d = .64, and marginally more enjoyable than the 
active PALM (M = 3.90, SD = 1.14), t(46) = 1.74, p < .10, d 
= .55. Participants in the passive-active training condition 
also self-reported to be more highly motivated and engaged 
during the module (on a scale from 1-6, 1 = not at all, 6 = 
very much, M = 4.90, SD = .72) than the active (M = 4.38, 
SD = 1.02) and the passive groups (M = 3.95, SD = 1.36), 
t(39) = 1.87, p = .07, d = .59, and t(39) = 2.77, p < .01, d = 
.87. We found no differences in the reported level of 
engagement and motivation between the active and the 
passive condition, p > .05. There were no condition 
differences on the other self-report measures. 

Conclusion 
The passive-active condition in this study, consisting of 
initial passive exposure, followed by active adaptive 
learning, produced durable learning that was faster, more 
accurate, efficient, and enjoyable than passive learning for 
the same amount of time in this complex pattern recognition 
domain. Passive-active also outperformed active adaptive 
learning on some measures, especially comparisons during 
the course of learning (Figure 3), as well as in accuracies 
and efficiencies uncorrected for what were likely random 
pretest variations across groups. Effect sizes for learning 
differences between passive-active and active ranged from 
around .6 to .8, which are medium to large effect sizes. The 
active condition in this experiment, as well as the active part 
of the passive-active condition, utilized the ARTS adaptive 
learning algorithm previously found to be highly effective in 
earlier work. The passive-active condition here appears to 
markedly enhance a learning approach that has been 

                                                
3 The survey was implemented shortly after data collection began, 
so we did not have responses from the first 8 participants. 

Figure 3. Average accuracy across training blocks. The 
passive-active group received 14 passive trials at block 1. 
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previously shown to outperform classic adaptive learning 
systems and a number of presentation schemes in adaptive 
PL (Mettler & Kellman, 2014). 

The advantages of passive-active learning may have 
several explanations. Consistent with work on cognitive 
load and worked examples (e.g., Renkl et al., 2004), initial 
familiarization with category exemplars may allow relevant 
structure to be learned without imposing the additional task 
demands of active responding. Moreover, passive and active 
learning may complement each other in focusing attention 
on within-category similarities and between-category 
contrasts respectively (e.g., Carvalho & Goldstone, 2014). 
Specific advantages of passive exposure at the start of 
learning may include avoiding initial errors and persistence 
of incorrect guesses, as well as averting frustration that may 
arise in active learning from having to guess initially. 

This work has clear practical implications. Incorporating 
passive-active training is an easily implemented technique 
that is likely to improve learning technology. The primer 
used in this study, modeled after textbook instruction, 
prepared undergraduates to benefit from the ECG PALMs, 
but it was clearly not sufficient for producing highly 
accurate or fluent interpretation of heart patterns (e.g., 
accuracy levels after the primer averaged around 30% 
(pretest scores in Figure 2A). Thus, the present results 
confirm the importance of PL interventions as a valuable 
complement to declarative and procedural components of 
instruction (Kellman & Massey, 2013). Our results also 
raise a number of new research questions. For example, does 
the combination of passive and active classification produce 
similar learning gains and efficiency in other domains, 
particular in those where the learner already has more prior 
knowledge? How many passive exposures are optimal, and 
what is the relationship between the optimal number of 
exposures and the complexity of the learning domain? 
Additional research will be needed to further understand and 
optimally utilize the passive-active synergy.  
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