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Abstract 

Recent research indicates that perceptual learning (PL) 

interventions in real-world domains (i.e., mathematics, 

science) can produce strong learning gains, transfer, and 

fluency. Although results on domain-relevant assessments 

suggest characteristic PL effects, seldom have real-world PL 

interventions been explicitly tested for their effects on basic 

information extraction. We trained participants to classify 

Chinese characters, based on either (1) overall configurations 

(structures), (2) featural relations (components), or (3) non-

relational information (stroke-count control). Before and after 

training, we tested for changes in information extraction using 

a visual search task. Search displays contained all novel 

exemplars, involved manipulations of target-distractor 

similarity using structures and components, and included 

heterogeneous and homogeneous distractors. We found robust 

improvements in visual search for structure and component 

PL training relative to the control. High-level PL 

interventions produce changes in basic information extraction, 

and sensitivity induced by PL for both relational structure and 

specific components transfers to novel structural categories. 

 

Keywords: perceptual learning; educational technology; 

visual search; categorization. 

Introduction 

Research on expertise has shown that experts effortlessly 

attend to relevant features and relations (Gibson, 1969), that 

experts extract larger “chunks” of information, discover 

higher-order invariance, and do so with low attentional load 

(Gibson, 1969; Schneider & Shiffrin, 1977). Such changes 

in information extraction as a result of experience constitute 

perceptual learning (Gibson, 1969; for a recent review, see 

Kellman & Garrigan, 2009). 

Much contemporary research on perceptual learning (PL) 

has focused on basic sensory discriminations; however, PL 

effects are not confined to low-level tasks (Garrigan & 

Kellman, 2008; Kellman & Garrigan, 2009). In fact, the 

natural function of PL is to improve the extraction of 

information from complex objects and events (Kellman & 

Garrigan, 2009).  PL also likely involves discovery of 

abstract relational structures. Such high-level PL is a crucial 

component of expertise in many domains including reading 

(Baron, 1978; Yeh et al., 2003), chess (Chase & Simon, 

1973), and X-ray interpretation (Chi, Feltovich & Glaser, 

1981). In addition, recent research indicates an important 

role for PL in high-level symbolic domains, such as 

mathematics and science (e.g., Goldstone, Landy & Son, 

2008; Kellman et al., 2008).  

In recent research, Kellman and colleagues have shown 

that PL can be systematically engineered and accelerated 

using appropriate computer-based technology (e.g., 

Kellman, Massey & Son, 2010). Their approach to PL 

methods takes the form of perceptual learning modules 

(PLMs). Rather than focusing on memorization of instances, 

PLMs employ unique instances and systematic variations in 

the learning set to promote the learning of invariant or 

diagnostic structures characterizing a category or concept. 

Learners engage in short, interactive episodes focused on 

discrimination or classification. Because specific instances 

seldom or never repeat in PLMs, learners pick up structural 

invariance and can generalize it to new instances (Kellman 

et al., 2010).  Recent work suggests that relatively brief 

PLM interventions can produce dramatic learning gains in 

challenging mathematical domains, such as fraction learning 

and algebra problem solving (Kellman et al., 2008; Kellman 

et al., 2010). 

Purpose of Current Work 

In applying PL to complex, symbolic, real-world learning 

domains, a critical question arises - how do we tell that the 

driver in these effects is really PL? Kellman, Massey & Son 

(2010) set out characteristic design features of perceptual 

learning interventions and some signature effects that 

implicate PL. Yet, realistic learning domains are complex 

and involve synergies between conceptual knowledge and 

perception of structure.  Here we sought evidence of PL 

effects in a high-level, realistic learning domain, by 

explicitly testing after PLM use for basic changes in 

information extraction. 

We trained PL for complex patterns in Chinese characters 

using a paradigm similar to that used to train PL in math and 

science learning (Kellman et al., 2010). Since Chinese 

characters are logographic and have both local and global 

structure, we were able to train participants to recognize 

characters at 3 different levels of hierarchical organization: 

stroke, component, and structure. Participants in two PL 

conditions matched characters by component (featural 

relations) or overall structure (global configuration). 

Importantly, in the case of matching by structure, local 

components were free to vary.  Other studies have shown 

that an expert’s ability to use relevant ‘chunks’ based on 

components and configural structure has to be nourished by 

literacy development and cannot be obtained solely through 
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maturation (Yeh et al., 2003), making Chinese characters 

ideal for our aims. A condition in which learners judged 

characters' stroke count (high or low) served as a non-

structural control task. 

 Before and after training, we directly tested for basic 

information processing changes using a visual search task. 

The visual search task was a transfer task: It tested search 

efficiencies for stimuli that were never presented in the 

learning phase. We found consistent and reliable effects on 

visual search efficiency from structure and component 

training, relative to the stroke-count control condition, 

including some effects specifically related to different types 

of PL training. A key finding was that training to classify 

based on structure led to markedly improved visual search 

performance when targets and distractors shared a common 

structure, even for novel structures. 

Method 

Participants  

108 undergraduates participated in the experiment for 

course credit. All reported normal or corrected-to-normal 

vision. No participant reported any prior experience learning 

Chinese characters. 

Materials 

1136 images of actual Chinese characters were used (1102 

in the training phase, and 34 as novel items in the visual 

search task).  Images were presented in .png format in white 

SimSun 36-point font on a black background. The visual 

search task was presented using the Psychophysics Toolbox 

(Brainard, 1997), and the learning phase was a perceptual 

learning module (PLM) presented within a web-based Flash 

environment. 

Learning Phase In the learning phase, participants learned 

to classify Chinese characters in a PLM, which consisted of 

many short classification trials. On each trial, a given 

character appeared in the upper middle part of the screen 

with two separated characters presented below (Figure 1). 

Participants were instructed to select which of the two lower 

characters was in the same category as the upper character. 

The task was a discovery task, in that learners had to 

discover structural characteristics that led to correct answers 

and were guided only by accuracy feedback. (No further 

information about the category was provided.) There were 

three between-subject conditions: (1) Structure PLM, (2) 

Component PLM, and (3) Stroke PLM. Strokes are simple 

features such as dots, lines, and curves. The characters used 

in this study ranged from 5 – 17 strokes, and were sorted 

into three categories of stroke count: Low, Medium, and 

High. In the Stroke PLM condition, two characters were 

defined as a ‘match’ (same category) if they shared either 

Low or High stroke counts. Incorrect answer choices also 

contained those with Medium stroke count. A component 

(or radical) refers to the sub-character unit formed by a 

group of strokes that recurs in different characters. Most 

components occur in a certain position within characters, 

but the components used in this study varied in their 

positions within a character. For example, the component � 

can occur on the left (e.g., �), right (e.g., �), bottom (e.g., 

�), or top (e .g., �). The proportions of the component 

usually change when the character structure changes. 

Irrespective of its structure and the number of strokes or 

components, each character occupies a roughly constant 

square-shaped size. The Component PLM group learned to 

classify characters based on whether they contained the 

same radical: �, as in 	 and 
, or �, as in � and �.  

Incorrect answer choices also contained characters 

involving other components.  
The arrangement of different components at various 

positions forms the structure of the character. Yeh et al. 

(2003) showed, using hierarchical cluster analysis, that 

expert readers tend to categorize characters into 5 

categories: Horizontal, Vertical, P-shaped, L-shaped, and 

Enclosed. Participants in the Structure PLM group learned 

to categorize characters into Horizontal (e.g., �, �) and 

Vertical (e.g., �, �) structure categories. Two characters 

were characterized as a ‘match’ if they contained the same 

structure. P-shaped, L-shaped, and Enclosed structures were 

used as incorrect answer choices in the PLM.  

Crucially, all training conditions used the same pool of 

Chinese characters. Structure PLM training involved 

abstract PL, because the relevant categories depended across 

trials on relations rather than recurring concrete features 

(Garrigan & Kellman, 2008). The Component PLM 

involved learning of more concrete features, but it was also 

considered as a type of abstract PL because the components 

involved shape characteristics rather than discrete features, 

and varied in size and proportions across characters within a 

Figure 1: Sample PLM trial. On each trial, participants 

selected one of two choices to match a given Chinese 

character (on top). (a) In the Structure PLM training 

condition, characters ‘matched’ if they contained the same 

configural structure (Vertical shown). (b) In the Component 

PLM training condition, characters ‘matched’ if they shared 

the same component (� shown). 
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category; thus, some invariants of shape had to be extracted, 

apart from fixed positions, sizes, or even aspect ratios.  The 

Stroke PLM served as a baseline condition by allowing 

participants to interact with the same stimuli, but in a 

classification task in which the components and structural 

characteristics were not relevant.  

Visual Search Task Visual search has been used widely to 

study PL effects (e.g., Shiffrin and Lightfoot, 1997; Sigman 

& Gilbert, 2000). A typical trial requires participants to 

search for a target within a field of distractors that differ 

from the target in certain features. The number of the 

distractors is varied, creating different numbers of total 

items (i.e., set sizes). The dependence of the reaction time 

(RT) on the number of items (the “search slope”) is an 

indication of search efficiency: the larger the slope the less 

efficient is the search (Wolfe, 1998). In this task, 

participants searched for a character of a learned structure or 

component, among an array of characters that belonged to a 

different category of structure and/or component. This task 

consisted of novel characters, never seen in the learning 

phase, including those of an untrained structure and 

component category. 

Four different target-distractors pairs were created by 

varying the structure and component factors in a 2 

(structure: same or different) x 2 (component: same or 

different) design. Thus, target characters were paired with 

the following four kinds of distractors: (a) characters that 

shared the same structure and one component with the target 

(SsCs: same structure, same component); (b) characters that 

shared the same structure with the target but had different 

components from those of the target (SsCd); (c) characters 

that differed from the target in structure but shared one 

component with the target (SdCs); (d) characters that 

differed from the target in both structure and components 

(SdCd).  

To control orthographic complexity, only characters with 

8-10 strokes were included. Eight characters were chosen as 

targets, each having 9 strokes: (Horizontal) �, �, �, and 

�, and (Vertical)�, �, �, and �.  Half of each group 

contained radical �, and the other half contained radical �. 

The search displays contained 3, 8, or 13 characters 

randomly positioned in a 4 x 4 matrix (with jitter). For each 

target-distractor pair, the three set sizes were repeated 10 

times, with an equal number of target-present and target-

absent trials. This generated 240 trials, in which targets and 

distractors were novel exemplars of trained or familiar 

categories. These are referred to as F-F trials. 

To investigate the transfer effects of PLM training, 240 

more trials were added. 90 of which involved search for 

exemplars of a trained category among untrained category 

items (F-U trials). Here, the Structure PLM group searched 

for a target of a Horizontal or Vertical (trained) structure 

among distractors of a L-shaped structure (untrained 

distractors). Distractors shared or did not share a component 

with those of the target. The Component PLM group 

searched for a target that contained a trained component, 

among distractors without those components, but instead 

contained an untrained component �. Likewise, distractor 

items shared or did not share the same structure with those 

of the target. The opposite pairings generated 90 more trials 

that involved search for untrained targets among trained 

distractors (U-F trials). The remaining 60 trials involved 

untrained targets and untrained distractors (U-U trials). 

These involved targets and distractors with component � 

and L-shaped structure. 

In this task, similarity among distractors within a given 

display was controlled as a between-subject factor. Half of 

the participants searched homogeneous displays, in which 

all distractors were identical. The other half searched 

heterogeneous displays, in which distractors are different 

Figure 2: (a) Visual search procedure. This example depicts a set size 8 target-present trial with heterogeneous 

distractors. The target and distractors shown share the same structure and component (SsCs trial). The inter-trial interval 

was 1000ms. (b) Sample search displays with heterogeneous distractors. In visual search, target and distractors differed 

based on structures and components. Homogeneous displays contained identical distractors. 
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exemplars of a particular category. Each participant 

received 480 trials, given in four blocks corresponding to 

the search conditions: SsCs, SsCd, SdCs, SdCd. All other 

variables were randomized within each block. The order of 

the blocks given was randomized across all participants. The 

same visual search task was given twice to participants in all 

training conditions. 

Procedure 

The experiment began with a visual search task (pretest), 

followed by a PLM learning phase, and ended with another 

visual search task (posttest). A search trial progression is 

shown in Figure 2. Participants were asked to indicate, as 

accurately and quickly as they could, whether the search 

field contained the target. No feedback was provided after 

each trial, but an overall accuracy feedback was presented at 

the end of the task. 

In the learning phase, participants were presented with 

classification trials in a PLM format. On each trial, they 

were instructed to select one of two characters that matched 

a given character presented in the upper middle of the 

screen. Correct responses were those that appropriately 

matched the given character, which were dependent upon 

the learning condition randomly assigned to the participant. 

Accuracy and RT feedback was given after each trial, after 

each block of 20 trials, and when participants reached a 

designated achievement level. 

To complete the Structure and Component PLMs, 

participants were required to reach a predetermined learning 

criterion of 10 consecutive perfect classifications, with RT ≤ 

3 seconds, for each type of classification
1
. The Stroke PLM 

was designed to terminate after 290 trials, if participants did 

not reach the learning criterion sooner.
2
 The learning phase 

took no more than 45 minutes. After the learning phase, 

participants were given the posttest visual search task.  

Dependent Measures, Data Analysis and Hypotheses 

Based on Kellman and colleagues’ prior work, we expected 

the PLMs to produce robust classification learning, and as a 

result, changes in perceptual sensitivity that would be 

evident in the transfer task of visual search.  We expected 

greater improvement in search slope at posttest for search 

trials that required participants to distinguish between 

trained categories. We considered visual search times for 

correct responses only. To compare performance between 

pretest and posttest, we calculated the search slope 

difference, or the decrement of RT per search item, for each 

participant separately for each search trial type based on 

                                                
1
 Types of classification consisted of combinations of category 

members and distractors that differed by structure, component, and 

stroke-count. For example, one type of classification for those in 

the Structure PLM was matching a Low stroke-count Horizontal 

character with a High stroke-count Horizontal target.  
2
 This number was determined by a pilot study as the average 

number of trials needed for participants in other learning 

conditions to complete their training. 

structure and component similarity. This was the primary 

measure in the study.  

    As no previous work, to our knowledge, has tested 

transfer effects on visual search from PL classification 

training, we did not know exactly what effects to expect. 

We hypothesized that the Structure and Component PLM 

training would produce greater effects than the Stroke PLM 

control condition. However, even in the Stroke PLM 

condition, some PL may have occurred through mere 

exposure (Gibson, 1967; Logan, 1988). Furthermore, we 

hypothesized that PL effects should support transfer: 

Discrimination and fluency improvements relating to 

structure might improve structure discrimination in general, 

including with novel structures. 

Results 

PLM Data 

The average number of classification trials to complete 

Structure PLM was 323 trials (range 114 - 727), Component 

PLM was 398 trials (range 188 - 675), and Stroke PLM was 

273 trials (range 197-290). 14 of 36 participants were able 

to complete Stroke PLM with fewer than 290 trials.  

Visual Search Data 

Accuracy Error rates were low at pretest (mean 8.5%) and 

posttest (mean 7.7%). There was no reliable correlation 

between the error rates and the mean RTs obtained in each 

of the target-distractor pairs. Thus, there was no speed-

accuracy trade-off.  

Preliminary Analyses The mean RTs for correct responses 

for heterogeneous and homogeneous distractor displays at 

pretest were 2510 ms and 1697 ms, respectively, and at 

posttest were 2093 ms and 1437 ms, respectively. 

Figures 3 & 4 present the main results. PLM training 

showed robust effect on visual search performance across 

all transfer trial types, regardless of whether targets and 

distractors were exemplars of untrained categories (Figure 

3). One-way analyses of variance (ANOVAs) on search 

slope differences by transfer trial types (F-F, F-U, U-F, U-

U) showed no differences between transfer trial types, for 

both heterogeneous displays (F(3, 212) = 1.84, ns), and for 

homogeneous displays (F(3, 212) = 2.47, ns). Thus, we 

combined all transfer trials in the following analyses. 

 

General Effects of Relational PLM Training As expected, 

PLM training based on relational configurations produced 

significantly more improvements in visual search than 

Stroke PLM training across all trial types. This pattern was 

confirmed by analyses of PLM conditions in two separate 

mixed measures ANOVAs on search slope differences: 

PLM (Structure vs. Stroke and Component vs. Stroke) x 

display (homogeneous, heterogeneous) x transfer trial types 

(F-F, F-U, U-F, U-U). Structure PLM and Component PLM 

training each produced reliably greater increases in search 
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efficiency than Stroke PLM (F(1, 68) = 6.39, p <.05 and 

F(1, 68) = 5.08, p <.05, respectively), regardless of whether 

targets and distractors involved structure and components 

that had been seen in PLM training and whether the search 

displays contained heterogeneous or homogeneous 

distractors (See Figure 3). 

As expected, Structure and Component PLM training 

produced significant changes on visual search based on 

structure and component similarity. The effect of Structure 

PLM training was most notable in displays with 

heterogeneous distractors, while Component PLM training 

produced significant changes in search with homogeneous 

displays. This pattern was confirmed by a significant 

interaction of structure-similarity (same structure, different 

structure) x PLM (Structure, Component, Stroke) x display 

(homogeneous, heterogeneous) in a mixed measures 

ANOVA on search slope differences (F(2, 102) = 3.96, p < 

.05). Follow-up findings demonstrated that the differential 

effects on search improvement in each display type were 

due to the type of classification training. 

 For heterogeneous displays, the most improved 

performance was found with Structure PLM training for 

search when targets and distractors shared the same 

structure. (See Figure 4, left panel.) Performance in this case 

was reliably better than when targets and distractors did not 

share a common structure (t(17) = -2.48, p < .05; same-

structure: 86 ms/item, different-structure: 54 ms/item). As 

Figure 4 shows, no such pattern was present in the Stroke-

count PLM group or in the Component PLM group.  

For homogeneous displays, Component PLM training 

produced reliably more improvement for displays in which 

targets and distractors shared the same structure than when 

they did not (t(17) = -3.31, p < .05; same-structure: 58 

ms/item, different-structure: 32 ms/item). (See Figure 4, 

right panel.)  

Discussion and Conclusion 

Our results provide a crucial link between basic research in 

PL and applications of PL to instructional technology, in 

two ways.  First, PLM training in complex, real-world 

domains produces basic changes in information extraction 

as shown in a visual search task. Second, these changes 

involve abstract relations rather than the concrete features 

used in many PL studies. Consistent with our expectations, 

PLM training of abstract relations in Chinese characters 

produced specific changes in visual search, and sensitivity 

induced by PL for both configural structures and relational 

components transferred to novel relational categories. No 

specific characters seen in PLM training were used in visual 

search; improvements in visual search were therefore based 

on improved processing of relational structures. 

The most general effects were that both PLMs involving 

classifications of abstract relations produced greater 

improvements in visual search than a control condition, 

using the same stimuli, that did not require processing of 

relations. These effects held across all trial types. 

Figure 3: Improvements in search efficiency (ms/item) 

across different transfer conditions as a function of 

PLM training. Structure and Component PLM training led 

to more reductions in search slopes than Stroke PLM across 

all transfer conditions. (Error bars: ±1 SE) 

 

Figure 4:  Improvements in search efficiency (ms/item) 

as a function of PLM training.  Structure and Component 

PLMs led to most improvement in search efficiency when 

target and distractors shared the same structure, for 

heterogeneous and homogeneous displays, respectively.  

(Error bars: ± 1 SE) 
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As expected, structure-focused classification training 

produced specific changes in visual search performance 

when search was based on structural similarity. 

Interestingly, however, we found most improvement in 

search when target and distractors shared the same structure 

than when they differed by structure. This effect was 

consistent across transfer trial types. One possibility is that 

expertise of certain categories resulting from structural 

classification training may have allowed participants to set 

aside the category-identifying information, when it was not 

relevant, to facilitate search for a particular target. This 

advantage was specific to search with heterogeneous 

distractors. It could be that structure classification enabled 

learners to process the overall structures of new characters 

more effectively, allowing them to see relevant parts within 

complex arrangements.  This advantage may have been 

confined to cases of heterogeneous distractors because this 

condition posed more varied challenges for finding the 

relevant information.  

An advantage with same-structure search was also found 

with component-focused training. The Component PLM 

produced more efficient searches when target and distractors 

shared the same structure than when they differed by 

structure, but unlike with the Structure PLM, the effect 

occurred only for homogeneous distractor displays. One 

likely possibility was that component-based training may 

have allowed people to concurrently learn about structure. 

Although components can appear in various locations 

within each character, their size and shape varied depending 

on the character structure. Thus, to learn about the invariant 

relations defining each component, participants needed to 

attend to the location of each component and picked up 

structural relations as a result. While adequate to improve 

search for homogeneous distractors, this component training 

may not have provided enough facility with overall 

structures to benefit variable search among distractors in 

heterogeneous displays. 

In sum, our data provide strong indications that PL 

training produced changes in sensitivity seen in a transfer 

task of visual search.  Some effects were clearly specific to 

PL training for structural relations or specific components in 

that the PLM conditions led to different patterns of 

improvement. Future studies will be needed to fully 

understand these results, but the intricacy of the patterns we 

observed suggests that PL training may have interesting, 

unanticipated effects on information pickup.  

The improved sensitivity in visual search induced by PL 

for both relational structure and specific components shows 

that classification experience in complex domains does lead 

to basic changes in information extraction. Our findings, 

and future research in studying transfer effects from PL, 

may help us to understand how PL leverages basic 

information processing improvements to underwrite 

expertise in complex, real-world learning domains. 
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